Skip to main content
Log in

Stable genetic transformation of embryogenic cultures of Abies nordmanniana (nordmann fir) and regeneration of transgenic plants

  • Published:
In Vitro Cellular & Developmental Biology - Plant Aims and scope Submit manuscript

Summary

Stable genetic transformation of embryogenic cultures of Abies nordmanniana (Nordmann fir or Caucasian fir) was achieved using the Biolistic® transformation technology, followed by regeneration of transgenic plants. Selection of the transgenic tissue was based on the antibiotic resistance induced by the neomycin phosphotransferase II gene (npt II), in combination with the antibiotic geneticin. Six transclones were recovered from a total of 215 bombardments. Expression of the β-glucuronidase gene (uidA) was confirmed by histochemical analysis, and expression of npt II was verified by quantification of NPTII protein by enzyme linked immunosorbent assay (ELISA). Both genes were still expressed in the embryogenic tissue after 5 yr of in vitro culture and in mature somatic embryos and plants produced from these cultures. The integration of npt II was confirmed by Southern hybridization in embryogenic tissue after 5 yr of culture. After 5 yr of growth, uidA was still expressed in needles from the transformed trees.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • Bishop-Hurley, S. L.; Zabkievicz, R. J.; Grace, L. J.; Gardner, R. C.; Walter, C. Conifer genetic engineering: transgenic Pinus radiata (D Don) and Picea abies (Karst) plants are resistant to the herbicide Buster. Plant Cell Rep. 20:235–243; 2001.

    Article  CAS  Google Scholar 

  • Charest, P. J.; Devantier, Y.; Lachance, D. Stable transformation of Picea mariana (Black spruce) via microprojectile bombardment. In Vitro Cell. Dev. Biol. Plant 32:91–99; 1996.

    Article  Google Scholar 

  • Charity, J. A.; Holland, L.; Grace, L. J.; Walter, C. Consistent and stable expression of the npt II, uidA and bar genes in transgenic Pinus radiata after Agrobacterium tumefaciens-mediated transformation using nurse cultures. Plant Cell Rep. 23:606–616; 2005.

    Article  PubMed  CAS  Google Scholar 

  • Doyle, J.; Doyle, J. Isolation of Plant DNA from fresh tissue, Focus 12:13–15; 1987.

    Google Scholar 

  • Ellis, D. D.; McCabe, D. E.; McInnis, S.; Ramachandran, R.; Russell, D. R.; Wallace, K. M.; Martinell, B. J.; Roberts, D. R.; Raffa, K. F.; McCown, B. H. Stable transformation of Picea glauca by particle acceleration. Bio/Technology 11:84–89; 1993.

    Article  CAS  Google Scholar 

  • Find, J.I. Culturing conifer embryonic cell mass in culture medium containing an anti-auxin improves maturation of conifer somatic embryos and plant propagation of coniferous tree, Patent no. WO200120972-A; 2001.

  • Find, J. I.; Grace, L.; Krogstrup, P. Effects of anti-auxins on maturation of embryogenic tissue cultures of Nordmann fir (Abies nordmanniana). Physiol. Plant. 116:231–237; 2002.

    Article  PubMed  CAS  Google Scholar 

  • Huang, Y.; Diner, A. M.; Karnosky, D. F. Agrobacterium rhizogenes-mediated genetic transformation and regeneration of a conifer: Larix decidua. In Vitro Cell Dev. Biol. Plant 27:201–207; 1991.

    Google Scholar 

  • Kay, R.; Chan, A.; Daly, M.; McPherson, J. Duplication of CaMV 35S promoter sequences creates a strong enhancer for plant genes. Science 236:1299–1302; 1987.

    Article  CAS  PubMed  Google Scholar 

  • Klimaszewska, K.; Lachance, D.; Bernier-Cardou, M.; Rutlege, R. G. Transgene integration patterns and expression levels in transgenic lines of Picea mariana, P. glauca and P. abies. Plant Cell Rep. 21:1080–1087; 2003.

    Article  PubMed  CAS  Google Scholar 

  • Klimaszewska, K.; Lachance, D.; Pelletier, G.; Lelu, A. M.; Seguin, A. Regeneration of transgenic Picea glauca, P. mariana and P. abies after cocultivation of embryogenic tissue with Agrobacterium tumefaciens. In Vitro Cell. Dev. Biol. Plant 37:748–755; 2001.

    Article  CAS  Google Scholar 

  • Kozak, M. The scanning model for translation: An update. J. Cell Biol. 109:229–241; 1989.

    Article  Google Scholar 

  • Levée, V.; Garin, E.; Klimaszewska, K.; Séguin, A. Stable genetic transformation of white pine (Pinus strobus L.) after cocultivation of embryogenic tissues with Agrobacterium tumefaciens. Mol. Breed. 5:429–440; 1999.

    Article  Google Scholar 

  • Levée, V.; Lelu, M.-A.; Jouanin, L.; Cornu, D.; Pilate, C. Agrobacterium tumefaciens-mediated transformation of hybrid larch (Larix kaempferi x L. decidua) and transgenic plant regeneration. Plant Cell Rep. 16:680–685; 1997.

    Article  Google Scholar 

  • Pena, L.; Séguin, A. Recent advances in the genetic transformation of trees. Trends Biotechnol. 19:500–506; 2001.

    Article  PubMed  CAS  Google Scholar 

  • Tang, W.; Newton, R. J. Genetic transformation of conifers and its application in forest biotechnology. Plant Cell Rep. 22:1–15; 2003.

    Article  PubMed  CAS  Google Scholar 

  • Wagner, A.; Moody, J.; Grace, L. J.; Walter, C. Transformation of Pinus radiata based on selection with hygromycin B. NZ J. For. Sci. 27(3):280–288; 1997.

    CAS  Google Scholar 

  • Walter, C.; Fenning, T. Deployment of genetically-engineered trees in plantation forestry—an issue of concern? The science and politics of genetically modified tree plantations. In: Walter, C.; Carson, M. J., eds. Plantation forest biotechnology for the 21st century, Kerala, India: Research Signpost; 2004;423–424.

    Google Scholar 

  • Walter, C.; Grace, L. J.; Donaldson, S. S.; Moody, J.; Gemmell, J. E.; van der Maas, S.; Kvaalen, H.; Lönneborg, A. An efficient Biolistic® transformation protocol for Picea abies (L.) Karst embryogeneic tissue and regeneration of transgenic plants. Can. J. For. Res. 29:1539–1546; 1999.

    Article  Google Scholar 

  • Walter, C.; Grace, L. J.; Wagner, A.; Walden, A. R.; White, D. W. R.; Donaldson, S. S.; Hinton, H. H.; Gardner, R. C.; Smith, D. R. Stable transformation and regeneration of transgenic plants of Pinus radiata D. Don. Plant Cell Rep. 17:460–468; 1998.

    Article  CAS  Google Scholar 

  • Walter, C.; Smith, D. R.; Connett, M. B.; Grace, L. J.; White, D. W. R. A biolistic approach for the transfer and expression of a uidA reporter gene in embryogenic cultures of Pinus radiata. Plant Cell Rep. 14:69–74; 1994.

    Article  CAS  Google Scholar 

  • Wenck, A. R.; Quinn, M.; Whetten, R. W.; Pullman, G.; Sederoff, R. High efficiency Agrobacterium-mediated transformation of Norway spruce (Picea abies) and loblolly pine (Pinus taeda). Plant Mol. Biol. 39:407–416; 1999.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jens I. Find.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Find, J.I., Charity, J.A., Grace, L.J. et al. Stable genetic transformation of embryogenic cultures of Abies nordmanniana (nordmann fir) and regeneration of transgenic plants. In Vitro Cell.Dev.Biol.-Plant 41, 725–730 (2005). https://doi.org/10.1079/IVP2005704

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1079/IVP2005704

Key words

Navigation