Skip to main content
Log in

Melatonin: A potential regulator of plant growth and development?

  • Invited Review
  • Published:
In Vitro Cellular & Developmental Biology - Plant Aims and scope Submit manuscript

Summary

Recent research has reported the presence of melatonin (N-acetyl-5-methoxytryptamine), a mammalian indoleamine neurohormone, in higher plants, indicating that melatonin may be an important metabolic regulator that has been highly conserved across biological kingdoms. Melatonin is synthesized from tryptophan in the mammalian pineal gland and a similar biosynthetic pathway was recently described in St. John's wort shoot tissues, wherein radiolabel from tryptophan was recovered in serotonin and melatonin as well as indoleacetic acid. There is growing information describing melatonin control of physiological processes in mammals, yeast, and bacteria, including diurnal responses, detoxification of free radicals, and environmental adaptations. However, at the current time, there is no known specific role for melatonin in plant physiology. Alterations in melatonin concentrations in plant tissues have been shown to affect root development, mitosis, and mitotic spindle formation. The recent advancements in melatonin research in plants and some directions for important areas of future research are reviewed in this article.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Balzer, I.; Hardeland, R. Photoperiodism and effects of indoleamines in a unicellular alga, Gonyaulax polyedra. Science 253:795–797; 1991.

    Article  PubMed  CAS  Google Scholar 

  • Balzer, I.; Hardeland, R. Melatonin in algae and higher plants: possible new roles as a phytohormone and antioxidant. Bot. Acta 109:180–183; 1996.

    CAS  Google Scholar 

  • Banerjee, S.; Margulis, L. Mitotic arrest by melatonin. Exp. Cell Res. 78:314–318; 1973.

    Article  PubMed  CAS  Google Scholar 

  • Bartel, B. Auxin biosynthesis. Annu. Rev. Plant Physiol. Plant Mol. Biol. 48:51–66; 1997.

    Article  PubMed  CAS  Google Scholar 

  • Burkhardt, S.; Tan, D. X.; Manchester, L. C.; Hardeland, R.; Reiter, R. J. Detection and quantification of the antioxidant melatonin in Montmorency and Balaton tart cherries (Prunus cerasus). J. Agric. Food Chem. 19:4898–4902; 2001.

    Article  CAS  Google Scholar 

  • Dubbels, R.; Reiter, R. J.; Klenke, E.; Goebel, A.; Schnakenberg, E.; Ehlers, C.; Schiwara, H. W.; Schlcot, W. Melatonin in edible plants identified by radioimmunoassay and by high performance liquid chromatography-mass spectrometry. J. Pincal Res. 18:28–31; 1995.

    Article  CAS  Google Scholar 

  • Facchini, P. J.; Huber-Allanach, K. L.; Tari, L. W. Plant aromatic L-amino acid decarboxylases: evolution, biochemistry, regulation and metabolic engineering applications. Phytochemistry 54:121–138; 2000.

    Article  PubMed  CAS  Google Scholar 

  • Hardeland, R. The presence and function of melatonin and structurally related indoleamines in a dinoflagellate, and a hypothesis on the evolutionary significance of these tryptophan metabolites in unicellular. Experientia 49:614–622, 1993.

    Article  CAS  Google Scholar 

  • Hattori, A.; Migitata, H.; Masayuki, I.; Itoh, M.; Yamamoto, K.; Ritsuki, O.-K.; Hara, M.; Suzuki, T.; Reiter, R. J. Identification of melatonin in plants and its effects on plasma melatonin levels and binding to melatonin receptors in vertebrates. Biochem. Mol. Biol. Int. 35:627–634; 1995.

    PubMed  CAS  Google Scholar 

  • Hsieh, H. L.; Okamoto, H.; Wang, M.; And, L.-H.; Matsui, M.; Goodman, H.; Deng, X.-W. FIN219, an auxin-regulated gene, defines a link between phytochrome A and then downstream regulator COP1 in light control of Arabidopsis development. Genes Dev. 14:1958–1970; 2000.

    PubMed  CAS  Google Scholar 

  • Jackson, W. T. Regulation of mitosis II. Interaction of isopropyl N-phenylcarbamate and melatonin. J. Cell Sci. 5:745–755; 1969.

    PubMed  CAS  Google Scholar 

  • Klein, D. C. Photoneural regulation of the mammalian pineal gland. Photoperiodism, melatonin and the pineal gland. CIBA Foundation Symposium London: 117. Pitman; 1985:38–56.

    CAS  Google Scholar 

  • Klein, D. C.; Coon, S. L.; Roseboom, P. H.; Weller, J. L.; Bernard, M.; Gastel, J. A.; Zatz, M.; Iuvone, P. M.; Rodriguez, I. R.; Begay, V.; Falcon, J.; Cahill, G. M.; Cassone, V. M.; Baler, R. The melafonin rhythm-generating enzyme: molecular regulation of serotonin N-acetyltransferase in the pineal gland. Rev. Prog. Horm. Res. 52:307–357; 1997.

    CAS  Google Scholar 

  • Kolar, J.; Machackova, I.; Eder, J.; Prinsen, E.; van Dongen, W.; van Onckelen, H.; Illnerova, H. Melatonin: occurrence and daily rhythm in Chenopodium rubrum. Phytochemistry 44:1407–1413; 1997.

    Article  CAS  Google Scholar 

  • Manchester, L. C.; Tan, D.-X.; Reiter, R. J.; Park, W.; Monis, K.; Qi, W. B. High levels of melatonin in the seeds of edible plants—possible function in germ tissue protection. Life Sci 67:3023–3029; 2000.

    Article  PubMed  CAS  Google Scholar 

  • Michalczuk, L.; Ribnicky, D. M.; Cooke, T. J.; Cohen, J. D. Regulation of indole-3-acetic acid biosynthetic pathways in carrot cell cultures. Plant Physiol. 100:1346–1353; 1992.

    PubMed  CAS  Google Scholar 

  • Murch, S. J. Identification and characterization of melatonin in medicinal plants: feverfew, Huang-qin and St. John's wort. Ph.D. thesis, University of Guelph, Guelph, Ontario, Canada; 2000.

    Google Scholar 

  • Murch, S. J.; Campbell, S. S. B.; Saxena, P. K. The role of serotonin and melatonin in plant morphogenesis: regulation of auxin-induced root organogenesis in in vitro cultured explants of St. John's wort (Hypericum perforatum L.). In Vitro Cell. Dev. Biol. Plant 37:786–793; 2001.

    Article  CAS  Google Scholar 

  • Murch, S. J.; Choffe, K. L.; Victor, J. M. R.; Slimmon, T. Y.; KrishnaRaj, S.; Saxena, P. K. Thidiazuron-induced regeneration from hypocotyl cultures of St. John's wort (Hypericum perforatum cv. Anthos). Plant Cell Rep. 19:576–581; 2000b.

    Article  CAS  Google Scholar 

  • Murch, S. J.; KrishnaRaj, S.; Saxena, P. K. Tryptophan is a precursor for melatonin and serotonin biosynthesis in in vitro regenerated St. John's wort (Hypericum perforatum L. cv. Anthos) plants. Plant Cell Rep. 19:698–704; 2000a.

    Article  CAS  Google Scholar 

  • Murch, S. J.; KrishnaRaj, S.; Saxena, P. K. Production of medicinal plant species in sterile controlled environments. In: Kubota, C.; Chun, C., eds. Transplant production in the 21st century. Dordrecht: Kluwer Academic Press; 2000c:160–165.

    Google Scholar 

  • Murch, S. J.; Simmons, C. B.; Saxena, P. K. Melatonin in feverfew and other medicinal plants. Lancet 350(9091:Nov. 29):1598–1599; 1997.

    Article  PubMed  CAS  Google Scholar 

  • Östin, A.; Ilic, N.; Cohen, J. D. An in vitro system from maize seedlings for tryptophan independent indole-3-acetic acid biosynthesis. Plant Physiol. 119:173–178; 1999.

    Article  PubMed  Google Scholar 

  • Poeggeler, B.; Balzer, I.; Hardeland, R.; Lerchl, A. Pineal hormone melatonin oscillates also in the dinoflagellate Gonyaulax polyedra. Naturwissenschaften 78:268–269; 1991.

    Article  CAS  Google Scholar 

  • Poeggeler, B.; Hardeland, R. Detection and quantification of melatonin in a dinoflagellate, Gonyaulax polyedra: solutions to the problem of methoxyindole destruction in non-vertebrate material. J. Pineal Res. 17:1–10; 1994.

    Article  PubMed  CAS  Google Scholar 

  • Poeggeler, B.; Reiter, R. J.; Tan, D.-X.; Chen, L.-D.; Manchester, L. C. Melatonin hydroxyl radical-mediated oxidative damage and aging: a hypothesis. J. Pineal Res. 14:151–168; 1993.

    Article  PubMed  CAS  Google Scholar 

  • Radwanski, E. R.; Last, R. L. Tryptophan biosynthesis and metabolism: biochemical and molecular genetics. Plant Cell 7:921–934; 1995.

    Article  PubMed  CAS  Google Scholar 

  • Ranghuram, N.; Sopory, S. K. Evidence for some common signal transduction events for opposite regulation of nitrate reductase and phytochrome-1 gene expression by light. Plant Mol. Biol. 29:25–35; 1995.

    Article  Google Scholar 

  • Reiter, R. J. Pineal melatonin: cell biology of its synthesis and of its physiological interactions. Endo. Rev. 12:151–181; 1991.

    CAS  Google Scholar 

  • Beiter, R. J. Oxidative damage in the central nervous system: protection by melatonin. Prog. Neurobiol. 56:359–384; 1998.

    Article  Google Scholar 

  • Reiter, R. J.; Tan, D.-X.; Burkhardt, S.; Manchester, L. C. Melatonin in plants. Nutrition Rev. 59:266–290; 2001.

    Google Scholar 

  • Reiter, R. J.; Tang, L.; Garcia, J. J.; Munoz-Hoyos, A. Pharmacological actions of melatonin in oxygen radical pathophysiology. Life Sci. 60:2255–2271; 1997.

    Article  PubMed  CAS  Google Scholar 

  • Ribnicky, D. M.; Illic, N.; Cohen, J. D.; Cooke, T. J. The effects of exogenous auxins on endogenous indole-3-acetic acid metabolism: the implications for carrot somatic embryogenesis. Plant Physiol. 112:549–558; 1996.

    PubMed  CAS  Google Scholar 

  • Schroder, R.; Abele, C.; Gohr, P.; Stuhlfauth-Roisch, U.; Grosse, W. Latest on enzymology of serotonin biosynthesis in walnut seeds. In: Huether, G.; Kochen, W.; Simat, T. J.; Steinhart, H., eds. Tryptophan serotonin and melatonin: basic aspects and applications. Dordrecht: Kluwer Academic Publishers; 1999:637–644.

    Google Scholar 

  • Skoog, F.; Miller, C. O. Chemical regulation of growth and organ formation in plant tissues cultured in vitro. Symp. Soc. Exp. Biol. 11:118–140; 1957.

    Google Scholar 

  • Soh, M.; Hong, S. H.; Kim, B. C.; Vizir, I.; Park, D. H.; Choi, G.; Hong, M. Y.; Chung, Y.-Y., Furuya, M.; Ham, H.-G. Regulation of both light and auxin-mediated development by Arabidopsis IAA3/SHY2 gene. J. Plant Biol. 42:239–246; 1999.

    Article  CAS  Google Scholar 

  • Stehle, J. H.; von Gall, C.; Schomerus, C.; Korf, H.-W. Of rodents and ungulates and melatonin: creating a uniform code for darkness by different signaling mechanisms. J. Biol. Rhythms 16:312–325; 2001.

    Article  PubMed  CAS  Google Scholar 

  • Tian, Q.; Reed, J. W. Control of auxin-regulated root development by the Arabidopsis thaliana SHY2/IAA3 gene. Development 126:711–721; 1999.

    PubMed  CAS  Google Scholar 

  • Van Tassel, D. L.; O'Neill, S. D. Putative regulatory molecules in plants: evaluating melatonin. J. Pineal Res. 31:1–7; 2001.

    Article  PubMed  Google Scholar 

  • Van Tassel, D. L.; Roberts, N.; Lewy, A.; O'Neill, S. D. Melatonin in plant organs. J. Pineal Res. 31:8–15; 2001.

    Article  PubMed  Google Scholar 

  • Wurtman, R. J.; Axelrod, J.; Chu, E. W. Melatonin, a pineal substance: effect on the rat ovary. Science 141:277–278; 1963.

    Article  PubMed  CAS  Google Scholar 

  • Yamada, J.; Sugimoto, Y.; Inoue, K. Selective serotonin reuptake inhibitors fluoxetine and fluyoxamine induce hyperglycemia by different mechanisms. Eur. J. Pharmacol. 382:211–215; 1999.

    Article  PubMed  CAS  Google Scholar 

  • Yu, H. S.; Reiter, R. J. Melatonin: biosynthesis, physiological effects and clinical applications. Boca Raton, FL: CRC Press; 1993.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Praveen K. Saxena.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Murch, S.J., Saxena, P.K. Melatonin: A potential regulator of plant growth and development?. In Vitro Cell.Dev.Biol.-Plant 38, 531–536 (2002). https://doi.org/10.1079/IVP2002333

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1079/IVP2002333

Key words

Navigation