Skip to main content
Log in

Artificial gene-clusters engineered into plants using a vector system based on intron-and intein-encoded endonucleases

  • Published:
In Vitro Cellular & Developmental Biology - Plant Aims and scope Submit manuscript

Summary

The ability to create artificial gene-clusters for genetic transformation could facilitate the development of crops with multiple engineered traist, or with traits which result from the expression of multiple genes. A simple method to assemble artificial gene-clusters was developed by designing a multiple cloning site consisting of an array of homing endonuclease cleavage sites into a single vector. These enzymes are also known as intron-or intein-encoded endonucleases, and have very long recognition sequences, which makes them very rare cutters. The resulting vectors are pUGA for microprojectile-mediated transformation, and pUGA2 for Agrobacterium-mediated transformation. In addition, a series of unidirectional shuttle vectors containing various combinations of homing endonuclease restriction sites was constructed. Gene cassettes can be cloned into individual shuttles, and then transferred to either pUGA or pUGA2 to construct artificial gene-clusters. To test the feasibility of this approach, a six-gene cluster was constructed and transformed into soybean via microprojectile bombardment and into tobacco via Agrobacterium. The genes were assayed for expression in both the T0 and T1 generations for three independent transgenics. Up to five of the six genes were expressed. Additional changes to the construction of individual gene cassettes may improve the frequency with which all genes in the cluster are expressed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • Allen, G. C.; Spiker, S.; Thompson, W. F. Use of matrix attachment regions (MARd) to minimize transgene silencing. Plant Mol. Biol. 43:361–376; 2000.

    Article  PubMed  CAS  Google Scholar 

  • An, Y.-Q.; McDowell, J. M.; Huang, S.; McKinney, E. C.; Chambliss, S.; Meagher, R. B. Strong, constitutive expression of the Arabidopsis ACT2/ACT8 actin subclass in vegetative tissues. Plant J. 10:107–121; 1996.

    Article  PubMed  CAS  Google Scholar 

  • Asselberg, F. A. M.; Rival, S. Creation of a novel, versatile multiple cloning site cut by four rare-cutting homing endonucleases. BioTechniques 20:558–562; 1996.

    Google Scholar 

  • Becker, D.; Kemper, E.; Schell, J.; Masterson, R. New plant binary vectors with selectable markers located proximal to the left T-DNA border. Plant Mol. Biol. 20:1195–1197; 1992.

    Article  PubMed  CAS  Google Scholar 

  • Belfort, M.; Raeban, M. E.; Coetzee, T.; Dalgaard, J. Z. Prokaryotic introns and inteins: a panoply of form and function. J. Bacteriol. 177:3897–3903; 1995.

    PubMed  CAS  Google Scholar 

  • Bower, R.; Elliott, A. R.; Potier, B. A. M.; Birch, R. G. High-efficiency, microprojectile-mediated cotransformation of sugarcane, using visible or selectable markers. Mol. Breed. 2:239–249; 1996.

    Article  CAS  Google Scholar 

  • Breyne, P.; Gheysen, G.; Jacobs, A.; Van Montagu, M.; Depicker, A.. Effect of T-DNA configuration on transgene expression. Mol. Gen. Genet. 235:389–396; 1992.

    Article  PubMed  CAS  Google Scholar 

  • Campbell, B. T.; Baenziger, P. S.; Mitra, A.; Sato, S.; Clemente, T. Inheritance of multiple transgenes in wheat. Crop. Sci. 40:1133–1141; 2000.

    Article  CAS  Google Scholar 

  • Chen, L.; Marmey, P.; Taylor, N. J.; Brizard, J.-P.; Espinoza, C.; D'Cruz, P.; Huet, H.; Zhang, S.; de Kochko, A.; Beachy, R. N.; Fauquet, C. M. Expression and inheritance of multiple transgenes in rice plants. Nat. Biotechnol. 16:1060–1064; 1998.

    Article  PubMed  CAS  Google Scholar 

  • Chomczynski, P. One-hour alkaline capillary transfer for blotting of DNA and RNA. Anal. Biochem. 201:134–139; 1992.

    Article  PubMed  CAS  Google Scholar 

  • Colleaux, L.; d'Auriol, L.; Betermier, M.; Cottarel, G.; Jacquier, A.; Gilbert, F.; Dujon, B. Universal code equivalent of a yeast mitochondrial intron reading frame is expressed in E. coli as a specific double strand endonuclease. Cell 44:521–533; 1986.

    Article  PubMed  CAS  Google Scholar 

  • Colston, M. J.; Davis, E. O. The ins and outs of protein splicing elements. Mol. Microbiol. 12:359–363; 1994.

    Article  PubMed  CAS  Google Scholar 

  • Davis, S. J.; Vierstra, R. D. Soluble, highly fluorescent variants of green fluorescent protein (GFP) for use in higher plants. Plant Mol. Biol. 36:521–528; 1998.

    Article  PubMed  CAS  Google Scholar 

  • Garbarino, J. E.; Belknap, W. R. Isolation of a ubiquitin-ribosomal protein gene (ubi3) from potato and expression of its promoter in transgenic plants. Plant Mol. Biol. 24:119–127; 1994.

    Article  PubMed  CAS  Google Scholar 

  • Hajdukiewicz, P.; Svab, Z.; Maliga, P. The small, versatile pPZP family of Agrobacterium binary vectors for plant transformation. Plant Mol. Biol. 25:989–994; 1994.

    Article  PubMed  CAS  Google Scholar 

  • Halpin, C.; Barakate, A.; Askari, B. M.; Abbott, J. C.; Ryan, M. D. Enabling technologies for manipulating multiple genes on complex pathways. Plant Mol. Biol. 47:295–310; 2001.

    Article  PubMed  CAS  Google Scholar 

  • Hamilton, C. M.; Frary, A.; Lewis, C.; Tanksley, S. D. Stable transfer of intact high molecular weight DNA into plant chromosomes. Proc. Natl Acad. Sci. USA 93:9975–9979; 1996.

    Article  PubMed  CAS  Google Scholar 

  • Hunt, A. C.; Maiti, I. B. Strategies for expressing multiple foreign genes in plants as polycistronic constructs. In Vitro Cell. Dev. Biol. Plant 37:313–320; 2001.

    Article  CAS  Google Scholar 

  • Ingelbrecht, I.; Breyne, P.; Vanecompernolle, K.; Van Montagu, M.; Depicker, A. Transcriptional interference in transgenic plants. Gene 109:239–242;1991.

    Article  PubMed  CAS  Google Scholar 

  • Jefferson, R. A. The GUS reporter gene system. Nature 342:837–838; 1989.

    Article  PubMed  CAS  Google Scholar 

  • Komari, T.; Hiei, Y.; Saito, Y.; Murai, N.; Kumashiro, T. Vectors carrying two separate T-DNAs for cotransformation of higher plants mediated by Agrobacterium tumefaciens and segregation of transformants free from selection markers. Plant J. 10:165–174; 1996.

    Article  PubMed  CAS  Google Scholar 

  • Kramer, C.; DiMaio, J.; Carswell, G. K.; Shillito, R. D. Selection of transformed protoplast-derived Zea mays colonies with phosphinothricin and a novel assay using the pH indicator chlorophenol red. Plant Cell Rep. 190:454–458; 2002.

    Google Scholar 

  • Lambowitz, A. M.; Belfort, M. Innous as mobile genetic elements. Annu. Rev. Biochem. 62:587–622; 1993.

    Article  PubMed  CAS  Google Scholar 

  • Lebel, E. G.; Masson, J.; Bogucki, A.; Paszkowski, J. Transposable elements as plant transformation vectors for long stretches of foreign DNA. Theor. Appl. Genet. 91:899–906; 1995.

    Article  CAS  Google Scholar 

  • Lemieux, C.; Turmel, M. A group I intron in the chloroplast large subunit rRNA gene of Chlamydomonas eugametos encodes a double-strand endonuclease that cleaves the homing site of this intron. Curr. Gen. 19:43–47; 1991.

    Article  Google Scholar 

  • Mueller, J. E.; Bryk, M.; Lozios, N.; Belfort, M. Homing endonucleases. In: Linn, S. M.; Lloyd, R. S.; Roberts, R. J., eds. Nucleases, Cold Spring Harbor, NY: Cold Spring Harbor Laboratory Press; 1993:111–143.

    Google Scholar 

  • Mullen, J. A.; Adam, G.; Blowers, A.; Earle, E. D. Biolistic transfer of large DNA fragments to tobacco cells using YACs retrofitted for plant transformation. Mol. Breed. 4:449–457; 1998.

    Article  CAS  Google Scholar 

  • Muscerella, D. E.; Vogt, V. M. A mobile group I intron in the nuclear rDNA of Physarum polycephalum. Cell 56:443–454; 1989.

    Article  Google Scholar 

  • Nakashita, H.; Arai, Y.; Shikanai, T.; Doi, Y.; Yamaguchi, I. Introduction of bacterial metabolism into higher plants by polycistronic transgene expression. Biosci. Biotechnol. Biochem. 65:1688–1691; 2001.

    Article  PubMed  CAS  Google Scholar 

  • Padidam, M.; Cao, Y. J. Elimination of transcriptional interference between tandem genes in plant cells. Bio Techniques 31:328–334; 2001.

    CAS  Google Scholar 

  • Perler, F. B.; Comb, D. G.; Jack, W. E.; Moran, L. S.; Qiang, B.; Kucera, R. B.; Benner, J.; Slatko, B. E.; Nwankwo, D. O.; Hempstead, S. K.; Carlow, C. K. S.; Jannasch, H. Intervening sequences in an Archea DNA polymerase gene. Proc. Natl Acad. Sci. USA 89:5577–5581; 1992.

    Article  PubMed  CAS  Google Scholar 

  • Perler, F. B.; Davis, E. O.; Dean, G. E.; Gimble, F. S.; Jack, W. E.; Neff, N.; Noren, C. J.; Thorner, J.; Belfort, M. Protein splicing elements: inteins and exteins—a definition of terms and recommended nomenelature. Nucl. Acids Res. 22:1125–1127; 1994.

    Article  PubMed  CAS  Google Scholar 

  • Sambrook, J.; Fritsch, E. F.; Maniatis, T. Molecular cloning. A laboratory manual. Cold Spring Harbor, NY: Cold Spring Harbor Laboratory Press; 1989.

    Google Scholar 

  • Schardl, C. L.; Byrd, A. D.; Benzion, G.; Altschuler, M. A.; Hildebrand, D. F.; Hunt, A. G. Design and construction of a versatile system for the expression of foreign genes in plants. Gene 61:1–11; 1987.

    Article  PubMed  CAS  Google Scholar 

  • Schmidt, M. A.; Parrott, W. A. Quantitative detection of transgenes in soyben [Glycine max (L.) Mirrill] and peanut (Arachis hypogaea L.) by rel-time polymerase chain reaction. Plant Cell Rep. 20:422–428; 2001.

    Article  CAS  Google Scholar 

  • Shibata, D.; Liu, Y.-G. Agrobacterium-mediated plant transformation with large DNA fragments. Trends Plant Sci. 5:354–355; 2000.

    Article  PubMed  CAS  Google Scholar 

  • Sugita, K.; Matsumaga, E.; Kasahara, T.; Ebinuma, H. Transgene stacking in plants in the absence of sexual crossing. Mol. Breed. 6:529–536; 2000.

    Article  CAS  Google Scholar 

  • Thomson, J. M.; Compton, M. M. Disposable device for the isolation of DNA from agarose gels. BioTechniques 24:942; 1998.

    PubMed  CAS  Google Scholar 

  • Thomson, J. M.; Parrott, W. A. pMECA: a cloning plasmid with 44 unique restriction sites that allows selection of recombinants based on colony size. Bio Techniques 24:922–927; 1998.

    CAS  Google Scholar 

  • Trick, H. N.; Dinkins, R. D.; Santarem, E. R.; Di, R.; Samoylov, V. M.; Meurer, C.; Walker, D.; Parrott, W. A.; Finer, J. J.; Collins, G. B. Recent advances in soybean transformation. Plant Tiss. Cult. Biotechnol. 3:9–26; 1997.

    Google Scholar 

  • Überlacker, B.; Werr, W. Vectors with rate-cutter restriction enzyme sites for expression of open reading frames in trasgenic plants. Mol. Breed. 2:293–295; 1996.

    Article  Google Scholar 

  • Xu, M. Q.; Southworth, M. W.; Mersha, F. B.; Hornstra, L. J.; Perler, F. In vitro protein splicing of a purified precursor and the identification of a branched intermediate. Cell 75:1371–1377; 1993.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wayne A. Parrott.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Michael Thomson, J., Lafayette, P.R., Schmidt, M.A. et al. Artificial gene-clusters engineered into plants using a vector system based on intron-and intein-encoded endonucleases. In Vitro Cell.Dev.Biol.-Plant 38, 537–542 (2002). https://doi.org/10.1079/IVP2002329

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1079/IVP2002329

Key words

Navigation