Skip to main content
Log in

Genetic analysis of variation in micropropagated plants of Melia azedarach L.

  • Published:
In Vitro Cellular & Developmental Biology - Plant Aims and scope Submit manuscript

Summary

Plants were regenerated by shoot multiplication from four clones of Melia azedarach L. during 12 mo. of subculturing. One hundred and one of these plants were examined by randomly amplified polymorphic DNA analysis. All regenerated plants showed at least one polymorphism. However, no chromosome number alterations were observed. The pattern of variation obtained by principal coordinated analysis showed a random distribution of variation among regenerated plants and their controls, indicating that genetic alterations were not cumulative during in vitro culture. Similar results were found using Shannon's index, which revealed that 50% of the observed diversity resided among plants coming from the same subculture generation. This high intraclonal variation does not provide a clear scenario for predicting the amount of culture time required to preserve genetic fidelity in commercially micropropagated M. azedarach plants. Our work suggests that other mechanisms, such as chimerism, contribute to intraclonal heterogeneity in vitro.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • Ahmad, Z. D.; Zaidi, N.; Shah, F. H. Micropropagation of Melia azedarach from mature tissue. Pak. J. Bot. 22(2):172–178; 1990.

    Google Scholar 

  • Ahuja, M. R. Somaclonal genetics of forest trees. In: Jain, S. M.; Brar, D. S.; Ahloowalia, B. S., eds. Somaclonal variation and induced mutations in crop improvement. Dordrecht: Kluwer Academic Publishers; 1998:105–121.

    Google Scholar 

  • Al-Zahim, M. A.; Ford-Lloyd, B. V.; Newbury, H. J. Detection of somaclonal variation in garlic (Allium satirum L.) using RAPD and cytological analysis. Plant Cell Rep. 18:473–477; 1999.

    Article  CAS  Google Scholar 

  • Bogani, P.; Simoni, A.; Lio, P.; Scialpi, A.; Buiatti, M. Genome flux in tomato cell clones cultured in vitro in different physiological equilibria. II. A RAPD analysis of variability. Genome 39:846–853; 1996.

    CAS  Google Scholar 

  • Cassells, A. C. In-vitro-induced mutations for disease resistance. In: Jain, S.M.: Brar, D. S.; Ahloowalia, B. S., eds. Somaclonal variation and induced mutations in crop improvement. Dordrecht: Kluwer Academic Publishers, 1998;367–378.

    Google Scholar 

  • Cassells, A. C.; Croke, J. T.; Doyle, B. M. Evaluation of image analysis, flow cytometry, and RAPD analysis for the assessment of somaclonal variation and induced mutation in tissue culture-derived Pelargonium plants. Angew. Bot. 71:125–130; 1997.

    Google Scholar 

  • Chen, W. H.; Chen, T. M.; Fu, Y. M.; Hsieh, R. M.; Chen, W. S. Studies on somaclonal variation in Phalaenopsis. Plant Cell Rep. 18:7–13; 1998.

    Article  Google Scholar 

  • Cozzo, D. Los intercambios e interacciones de especies arbóreas exóticas y nativas en la complementación y diversificación de sus respectivos sistemas forestales. Quebracho 2:39–46; 1994.

    Google Scholar 

  • Das, R. K.; Bhowmik, G. Some somaclonal variants in pincapple [Ananas comosus (L.) Merr.] plants obtained from different propagation techniques. Int. J. Trop. Agric. 15(1–4):95–100; 1997.

    Google Scholar 

  • Datta, P. C.; Samanta, P. Cytotaxonomy of Meliaccac. Cytologia 42:197–208; 1977.

    Google Scholar 

  • Deng, Z. N.; Gentile, A.; Nicolisi, E.; Domina E; Vardi, A.; Tribulato, E. Identification of in vivo and in vitro lemon mutants by RAPD markers. J. Hort. Sci. 70;117–125; 1995.

    CAS  Google Scholar 

  • Domecq, C. M. Cultivo in vitro de yemas axilares de paraíso gigante (Melia azedarch L. var. gigantea). Phyton 48(1/2):43–69; 1988.

    Google Scholar 

  • Dunstan, D.L.; Fautours, T. E.; Thorpe, T. A. Somatic embryogenesis in woody plants In: Thorpe, T. A., ed. In vitro embryogenesis in plants. Dordrecht: Kluwer Academic Publishers: 1995:471–538.

    Google Scholar 

  • Eapen, S.; Kale, D. M.; George, L. Embryonal shoot tip multiplication in peanut: clonal fidelity and variation in regenerant plants. Tropical Agric. Res. Extension 1(1):23–27: 1998.

    Google Scholar 

  • Farooq, S.; Shah, T. M.; Arif, M.; Iqbal, N. Utilization of RAPD markers for the identification of cultivated and wild rice species. Pak. J. Bot. 27(1):127–138; 1995.

    Google Scholar 

  • Fourré, J. L.; Berger, P.; Niquet, L.; André, P.: Somatic embryogenesis and somaclonal variation in Norway spruce: morphogenetic, cytogenetic and molecular approaches. Theor. Appl. Genet. 94:159–169; 1997.

    Article  Google Scholar 

  • Gallego, F. J.; Martinez, I.; Celestino, C.; Toribio, M. Testing somaclonal variation using RAPDs in Quercus suber L. somatic embryos. Int. J. Plant Sci. 158(5):563–567; 1997.

    Article  CAS  Google Scholar 

  • Gallois, A.; Audran, J. C.; Burrus, M. Assessment of genetic relationships and population discrimination among Fagus sylvatica L. by RAPD. Theor. Appl. Genet. 97:211–219; 1998.

    Article  Google Scholar 

  • Grajal-Martín, M.-J.; Siverio-Grillo, G.; Marrero-Domínguez, A. The use of randomly amplified polymorphic DNA (RAPD) for the study of genetic diversity and somaclonal variation in Musa. Proc. Int. Symp. Banana in Subtropics. V. Galán Sauco, ed. Acta Hort. 490:445–454;1998.

    Google Scholar 

  • Gupta, P.; Grob, J. A. Somatic embryogenesis in conifers. In: Jain, S. M.; Gupta, P. K.; Newton, R. J., eds. Somatic embryogenesis in woody plants. Dordrecht: Kluwer Academic Publishers; 1995:81–98.

    Google Scholar 

  • Hashmi, G.; Hucttel, R.; Meyer, R.; Krusberg, L.; Hammerschlag, F. RAPD analysis of somaclonal variants derived from embryo callus cultures of peach. Plant Cell Rep. 16:624–627; 1997.

    CAS  Google Scholar 

  • Heinze, B.; Schmidt, J. Monitoring genetic fidelity vs. somaclonal variation in Norway spruce (Picea abies) somatic embryogenesis by RAPD analysis. Euphytica 85:341–345; 1995.

    Article  CAS  Google Scholar 

  • Henry, Y.; Nato, A.; De Buyser, J. Genetic fidelity of plants regenerated from somatic embryos of cereals. In: Jain, S. M.; Brar, D. S.; Ahloowalia, B. S., eds. Somaclonal variation and induced mutations in crop improvement. Dordrecht: Kluwer Academic Publishers, 1998; 65–80.

    Google Scholar 

  • Hirochika, I.; Sugimoto, K.; Otsuki, Y.; Tsugawa, H.; Kanda, M. Retrotransposons of rice involved in mutations induced by tissue culture. Proc. Natl Acad. Sci. USA 93:7783–7788; 1996.

    Article  PubMed  CAS  Google Scholar 

  • Jain, S. K.; Wu, L.; Vaidya, K. R. Levels of morphological and allozyme variation in Indian amaranths: a striking contrast. J. Hered. 71:283–285; 1980.

    Google Scholar 

  • Jaligot, E.; Rival, A.; Beule, T.; Dussert, S.; Verdiel, J.-L. Somaclonal variation in oil palm (Elaeis guineensis Jacq.): the DNA methylation hypothesis. Plant Cell Rep. 19:684–690; 2000.

    Article  CAS  Google Scholar 

  • Khosla, P. K.; Styles, B. T. Karyological studies and chromosomal evolution in Meliaceae. Silvae Genet. 24:73–83; 1975.

    Google Scholar 

  • Klopfenstein, N. B.; Kerl, J. G. The potential of biotechnology in temperate agroforestry practices. Agroforestry Systems 32:29–44; 1995.

    Article  Google Scholar 

  • Kovarik, A.; Koukalova, B.; Bezdek, M.; Opatrny, Z. Hypermethylation of tobacco heterochromatic loci in response to osmotic stress. Theor. Appl. Genet. 95:301–306; 1997.

    Article  Google Scholar 

  • Larkin, P. J.; Scowcroft, W. R. Somaclonal variation: a novel source of variability from cell culture for plant improvement. Theor. Appl. Genet. 60:197–214; 1981.

    Article  Google Scholar 

  • Lim, S.-H.; Teng, P. C.-P.; Lee, Y.-H.; Goh, C.-J. RAPD analysis of some species in the genus Vanda (Orchidaceae) Ann. Bot. 83:193–196; 1999.

    Article  CAS  Google Scholar 

  • Linacero, R.; Freitas Alves, E.; Vasquez, A. M. Hot spots of DNA instability revealed through the study of somaclonal variation in rye. Theor. Appl. Genet. 100:506–511; 2000.

    Article  CAS  Google Scholar 

  • Mabberley, D. J. A monograph of Melia in Asia and the Pacific. The history of white cedar and persian lilac. Garden's Bull. 37:49–64; 1984.

    Google Scholar 

  • Maluszynska, J.; Schweizer, D. Chromosomal instability of polysomatic plant in tissue culture. In Vitro Cell. Dev. Biol. Plant 35:168–169; 1999.

    Google Scholar 

  • Mangieri, H. R. Otras especies forestales de posible cultivo para la Argentina. In: ACME, eds. Enciclopedia Argentina de Agricultura y Jardinería. Tomo II. Fascículo 16–1. Buenos Aires; 1979:73.

  • McClintock, B. The significance of responscs of the genome to challenge. Science 226:792–801; 1984.

    Article  PubMed  CAS  Google Scholar 

  • Merkle, S. A.; Bailey, R. L.; Pauley, B. A.; Neu, K. A.; Kim, M. K.; Rugh, C. L.; Montello, P. M. Somatic embryogenesis from tissues of mature sweetgum trees. Can. J. For. Res. 27:959–964; 1997.

    Article  Google Scholar 

  • Munthali, M. T.; Newbury, H. J.; Ford Lloyd, B. V. The detection of somaclonal variants of beet using RAPD. Plant Cell Rep. 15:474–478; 1996.

    Article  CAS  Google Scholar 

  • Murashige, T.; Skoog, F. A revised medium for rapid growth and bioassays with tobacco tissue cultures. Physiol. Plant. 15:473–497; 1962.

    Article  CAS  Google Scholar 

  • Murata, M.; Orton, T. J. Analysis of karyotypic changes in suspension culture of celery. In: Fujiwara, A., ed. Plant tissue culture 1982. Tokyo: Maruzen; 1982:435–436.

    Google Scholar 

  • Ozeki, Y.; Davis, E.; Takeda, J. Somatic variation during long term subculturing of plant cells caused by insertion of a transposable element in phenylanine amnonia-lyase (PAL) gene. Mol. Gen. Genet. 254:407–416; 1997.

    Article  PubMed  CAS  Google Scholar 

  • Pack, K.-Y.; Hahn, E.-J. Variations in African violet ‘Crimson Frost’ micropropagated by homogenized leaf tissue culture. Hort. Technol. 9(4):625–628; 1999.

    Google Scholar 

  • Park, Y. S.; Pond, S. E.; Bonga, J. M. Initiation of somatic embryogenesis in white spruce (Picea glauca): genetic control, culture treatment effects, and implications for tree breeding. Theor. Appl. Genet. 86:427–436; 1993.

    Article  Google Scholar 

  • Park, Y. S.; Pond, S. E.; Bonga, J. M. Somatic embryogenesis in white spruce (Picea glauca): genetic control in somatic embryos exposed to storage, maturation treatments, germination, and cryopreservation. Theor. Appl. Genet. 89:742–750; 1994.

    Article  Google Scholar 

  • Pennington, T. D.; Styles, B.; Taylor, D. A. Flora Neotropica. Monograph No. 28; Bronx, New York: The New York Botanical Garden; 1981; 24–25.

    Google Scholar 

  • Pérez Ponce, J.; Jiménez, E. G.; Gómez, R. K. Field performance of selected sugarcane (Saccharum spp. hybrids) mutants. In: Jain, S. M.; Brar, D. S.; Ahloowalia, B. S., eds. Somaclonal variation and induced mutations in crop improvement. Dordrecht: Kluwer Academic Publishers; 1998:447–462.

    Google Scholar 

  • Rival, A. B., Tregear, J., Verdiel, J. L., Richaud, F., Beulé, T., Duval, Y. Molecular search for mRNA and genomic markers of the oil palm ‘mantled’ somaclonal variation. In: Drew, R. A., ed. Proc. Int. Symp. Biotechnology Tropical & Subtropical Species. Acta Hort. 461:165–171; 1998.

  • Rohlf, F. J. NTSYS-PC: Numerical taxonomy and multivariate analysis system. Version 2.0 Stony Brook, NY: Applied Biostatistics Inc., Department of Ecology and Evolution, State University of New York; 1998.

    Google Scholar 

  • Shoyama, Y.; Zhu, X. X.; Nakai, R.; Shiraishi, S.; Kohda, H. Micropropagation of Panax notoginseng by somatic embryogenesis and RAPD analysis of regenerated plantlets. Plant Cell Rep. 16:450–453; 1997.

    CAS  Google Scholar 

  • Straus, J. Maize endosperm tissue grown in vitro. II. Morphology and cytology. Am. J. Bot. 41:833–839; 1954.

    Article  Google Scholar 

  • Styles, B. T.; Vosa, C. G. Chromosome numbers in the Meliaceae. Taxon 20(4):485–499; 1971.

    Article  Google Scholar 

  • Thakur, R.; Rao, P. S.; Bapat, V. A. In vitro regeneration in Melia azedarach L. Plant Cell Rep. 18:127–131; 1998.

    Article  CAS  Google Scholar 

  • Tian, H.-C.; Marcotrigiano, M. Origin and development of adventitious shoot meristems initiated on plant chimeras. Dev. Biol. 155(1):259–269; 1993.

    Article  PubMed  CAS  Google Scholar 

  • Vallès, M. P.; Wang, Z. Y.; Montavon, P.; Potrykus, I.; Spangenberg, G. Analysis of genetic stability of plants regenerated from suspension cultures and protoplasts of meadow fescue (Festuca pratensis Huds.). Plant Cell Rep. 12:101–106; 1993.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. Echenique.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Olmos, S.E., Lavia, G., Di Renzo, M. et al. Genetic analysis of variation in micropropagated plants of Melia azedarach L.. In Vitro Cell.Dev.Biol.-Plant 38, 617–622 (2002). https://doi.org/10.1079/IVP2002319

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1079/IVP2002319

Key words

Navigation