Skip to main content

Advertisement

Log in

Derivation of soil values for the path ‘Soil-Soil Organisms’ for metals and selected organic compounds using species sensitivity distributions

  • Research Article
  • Subject Area 4.3: Regulatory Actions and Legislation on Testing Methods
  • Published:
Environmental Science and Pollution Research - International Aims and scope Submit manuscript

Abstract

Background, Aims and Scope

According to the German Federal Soil Protection Act, the natural function of soil as a habitat for human beings, animals, plants and soil organisms is, among other things, to be protected by deriving soil values for important chemicals regarding their amounts in the environment, their persistence and/or their toxicity. This contribution presents the results of the mathematical derivation of such values for nine metals and ten organic substances from soil ecotoxicological effect values available in the literature for microbial processes, plants and soil invertebrates.

Material and Methods

Ecotoxicological data were mostly extracted from published papers and reports and had to originate from valid studies that were performed according to internationally standardised guidelines (e.g. ISO) or were otherwise well documented, plausible and performed according to accepted laboratory practice. As test results, both structural (i.e., effects on mortality, growth or reproduction) and functional (i.e., effects on microbial activity or organic matter breakdown) parameters were included. The derivation of soil values was performed using the distribution based extrapolation model (DIBAEX) and EC50s (Effective Concentration) as input data.

Results

For 19 compounds, soil values could be calculated. In 18 of these 19 cases clear laboratory ecotoxicological effects (i.e., EC50 values) below the calculated soil value have been found in the literature.

Discussion

In those few cases where a comparison with field studies is possible, effects have been observed in the same order of magnitude as the calculated soil values. A comparison with other similar approaches confirmed the plausibility of the calculated values.

Conclusions

The DIBAEX-method is a feasible and widely accepted method for deriving soil values from ecotoxicological input data. Data availability was already satisfactory for some substances, but other substances, especially organics, were only poorly covered. The soil values presented here were based on EC50 input data. However, depending on the protection level aimed at by using soil values in legislation, it might be appropriate to use other input data such as NOECs in the derivation process.

Recommendations and Perspectives

It is recommended to generate an appropriate number of data for further relevant substances by means of a test battery or multi-species approaches such as terrestrial model ecosystems. These tests should also consider the influence of the bioavailability of substances.

A final recommendation for legally binding soil values demands a plausibility check of the mathematically derived values. This should include a comparison with natural background concentrations, soil values for other pathways and soil values used in legislation of other countries. Finally, expert judgement always has to be considered.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Abdul Rida AMM, Bouché MB (1995): Earthworm contribution to ecotoxicological assessments. Acta Zool Fennica 196, 307–310

    Google Scholar 

  • Adema DMM, Henzen L (1989): A comparison of plant toxicities of some industrial chemicals in soil culture and soilless culture. Ecotox Envir Saf 18, 219–229

    Article  CAS  Google Scholar 

  • Aldenberg T, Jaworska JS (2000): Uncertainty of the hazardous concentration and fraction affected for normal species sensitivity distributions. Ecotox Environ Saf 46, 1–18

    Article  CAS  Google Scholar 

  • Außendorf M, Suttner T, Martin W (2000): Zur Problematik der Anwendung von Hintergrundwerten beim Vollzug des Bodenschutzrechts. UWSF — Z Umweltchem Ökotox 12, 279–283

    Google Scholar 

  • Bachmann G, Bannick C-G, Giese E, Glante F, Keine A, Konietzka R, Rück F, Schmidt S, Terytze K, Von Borries D (1997): Fachliche Eckpunkte zur Ableitung von Bodenwerten im Rahmen des Bundes-Bodenschutzgesetzes. In: Rosenkranz D, Bachman G, König W, Einsele G (eds), Handbuch des Bodenschutzes. E. Schmidt Verlag, Berlin. 24. Lfg. IX/97, Nr. 3500, 121 pp

    Google Scholar 

  • Bakker FM, Feije R, Grove AJ, Hoogendorn G, Jacobs G, Loose ED, Van Stratum P (2003): A laboratory test protocol to evaluate effects of plant protection products on mortality and reproduction of the predatory mite Hypoaspis aculeifer Canestrini (Acari: Laelapidae) in standard soil. J Soils Sediments 3, 73–77

    Article  Google Scholar 

  • BBodSchG (1998): Gesetz zum Schutz vor schädlichen Bodenveränderungen und zur Sanierung von Altlasten (Bundes-Bodenschutzgesetz). Bundesgesetzblatt I, 502 vom 17. März 1998

  • BBodSchV (1999): Bundes-Bodenschutz-und Altlastenverordnung (BBodSchV) vom 12. Juli 1999. BGBL I, Nr, 36, 1554–1582

  • Beck L, Dumpert K, Franke U, Mittmann H-W, Römbke J, Schönborn W (1988): Vergleichende ökologische Untersuchungen in einem Buchenwald nach Einwirkung von Umweltchemikalien. Spez Ber KFA Jülich 439, 548–701

    Google Scholar 

  • Bengtsson G, Tranvik L (1989): Critical metal concentrations for forest soil invertebrates. Water Air Soil Poll 47, 381–417

    Article  CAS  Google Scholar 

  • Bos R, Huijbregts M, Peijnenburg W (2005): Soil type-specific environmental quality standards for zinc in dutch soil. Integr Environ Assess Manag 1, 252–258

    Article  CAS  Google Scholar 

  • Bruus Pedersen M, Axelsen JA, Strandberg B, Jensen J, Attrill MJ (1999): The impact of a copper gradient on a microarthropod field community. Ecotoxicology 8, 467–483

    Article  Google Scholar 

  • Burton KW, Morgan E, Roig A (1984): The influence of heavy metals upon the growth of sitka-spruce in South Wales forests. II. Greenhouse experiments. Plant and Soil 78, 271–282

    Article  CAS  Google Scholar 

  • Campbell PJ, Arnold DJS, Brock TCM, Grandy NJ, Heger W, Heimbach F, Maund SJ, Streloke M (1999): Guidance Document on Higher-tier Aquatic Risk Assessment for Pesticides (HARAP). SETAC-Europe, Brussels, Belgium

    Google Scholar 

  • Conder JM, Lanno RP (2000): Evaluation of surrogate measures of cadmium, lead, and zinc bioavailability to Eisenia fetida. Chemosphere 41, 1659–1668

    Article  CAS  Google Scholar 

  • Conrady D (1986): Ökologische Untersuchungen über die Wirkung von Umweltchemikalien auf die Tiergemeinschaft eines Grünlands. Pedobiologia 29, 273–284

    CAS  Google Scholar 

  • Coppola S, Dumontet S, Pontonio M, Basile G, Marino P (1988): Effect of cadmium-bearing sewage sludge on crop plants and microorganisms in two different soils. Agric Ecosys Envir 20, 181–194

    Article  CAS  Google Scholar 

  • DEFRA (2006): Pesticide Risk Assessment Tool. Available from 〈http://www.webfram.com〉, accessed on 4 January 2006

  • Doelman P, Haanstra L (1983): De invloed van zware metalen op de bodemmicroflora. Reeks Bodembescherming 20. Staatsuitgeverij Den Haag

  • Dott W, Achazi R, Eisenträger A, Hund-Rinke K, Kördel W, Neumann-Hensel H, Pfeifer F, Römbke J, Wiesner J, Wilke B-M (2001): Biologische Testverfahren für Boden und Bodenmaterial. 7. Bericht des AK ‘Umweltbiotechnologie — Boden’. DECHEMA e.V., Frankfurt, 61 pp

    Google Scholar 

  • Elsgaard L, Petersen SO, Debosz K (2001a): Effects and risk assessment of Linear Alkylbenzene Sulfonates in agricultural soil. 1. Short-term effects on soil microbiology. Environ Toxicol Chem 20, 1656–1663

    Article  CAS  Google Scholar 

  • Elsgaard L, Petersen SO, Debosz K (2001b): Effects and risk assessment of Linear Alkylbenzene Sulfonates in agricultural soil. 2. Effects on soil microbiology as influenced by sewage sludge and incubation time. Environ Toxicol Chem 20, 1664–1672

    Article  CAS  Google Scholar 

  • EPPO (European Plant Protection Organization) (2003): EPPO Standards. Environmental Risk Assessment scheme for plant protection products. Bull. OEPP/EPPO 33, 195–208

    Google Scholar 

  • Escher BI, Hermens JLM (2004): Internal Exposure: Linking Bioavailability to Effects. Environ Sci Tech 38, 455A–462A

    CAS  Google Scholar 

  • Fairbrother A, Glazebrock PW, Van Straalen NM, Tarazona JV (2002): Test methods to determine hazards of sparingly soluble metal compounds in soils. SETAC Press, Pensacola, FL, USA

    Google Scholar 

  • Forbes VE, Calow P (2002): Species sensitivity distributions revisited: a critical appraisal. Human and Ecological Risk Assessment 8, 473–492

    Google Scholar 

  • Frampton GK, Jänsch S, Scott-Fordsmand JJ, Römbke J, Van den Brink PJ (2006): Effects of pesticides on soil invertebrates in laboratory studies: A review and analysis using species sensitivity distributions. Environ Toxicol Chem 25 (in press)

  • Frampton GK, Römbke J, Jänsch S, Scott-Fordsmand JJ, Van den Brink PJ (2005): WEBFRAM 5: Development of a web-based pesticide risk assessment module for below-ground invertebrates. Report to the Department for Environment, Food and Rural Affairs (DEFRA), UK, 86 pp

  • Greenslade P, Vaughan GT (2003): A comparison of Collembola species for toxicity testing of Australian soils. Pedobiologia 47, 171–179

    Article  CAS  Google Scholar 

  • Haimi J (2000): Decomposer animals and bioremediation of soils. Environ Pollut 107, 233–238

    Article  CAS  Google Scholar 

  • Heijbroek W, Van de Bund CF (1982): The influence of some agricultural practices on soil organisms and plant establishment of sugar beet. Neth J Pl Path 88, 1–17

    Article  Google Scholar 

  • Hommen U, Ratte H-T (1997): Künstliche Testsysteme zur Bewertung von PSM. Mathematische Modelle zur Effektabschätzung. UWSF — Z Umweltchem Ökotox 9, 267–272

    CAS  Google Scholar 

  • Hund-Rinke K, Koerdel W, Heiden S, Erb R (eds) (2002): Oekotoxikologische Testbatterien — Ergebnisse eines DBU-geförderten Ringtests. Erich Schmidt Verlag, Berlin

    Google Scholar 

  • Hund-Rinke K, Simon M (2005): Terrestrial toxicity of eight chemicals in a systematic approach. J Soils Sediments 5, 59–65

    Article  CAS  Google Scholar 

  • ISO (International Organization for Standardization) (1995): Soil quality — Determination of the effects of pollutants on soil flora. Part 2: Effects of chemicals on the emergence and growth of higher plants. ISO 11269-2. Geneva, Switzerland

    Google Scholar 

  • ISO (International Organization for Standardization) (1998): Soil Quality — Effects of pollutants on earthworms (Eisenia fetida). Part 2: Determination of effects on reproduction. ISO 11268-2. Geneva, Switzerland

    Google Scholar 

  • ISO (International Organization for Standardization) (1999): Soil Quality — Inhibition of reproduction of Collembola (Folsomia candida) by soil pollutants. ISO 11267. Geneva, Switzerland

    Google Scholar 

  • ISO (International Organization for Standardization) (2002a): Soil quality — Determination of the activity of the soil microflora using respiration curves. ISO 17155. Geneva, Switzerland.

    Google Scholar 

  • ISO (International Organization for Standardization) (2002b): Soil quality — Determination of potential nitrification — Rapid test by ammonium oxidation. ISO 15685. Geneva, Switzerland

    Google Scholar 

  • ISO (International Organization for Standardization) (2005): Soil quality — Guidance for the selection and application of methods for the assessment of bioavailability of contaminants in soil and soil materials. ISO/CD 17402. Geneva, Switzerland

    Google Scholar 

  • Jänsch S, Frampton GK, Römbke J, Van den Brink PJ, Scott-Fordsmand JJ (2006): Effects of pesticides on soil invertebrates in model ecosystem and field studies: A review and comparison with laboratory toxicity data. Environ Toxicol Chem 25 (in press)

  • Jensen J, Løkke H, Holmstrup M, Krogh PH, Elsgaard L (2001): Effects and risk assessment of Linear Alkylbenzene Sulfonates in agricultural soil. 5. Probabilistic risk assessment of Linear Alkylbenzene Sulfonates in sludge-amended soils. Environ Toxicol Chem 20, 1690–1697

    Article  CAS  Google Scholar 

  • Klimisch H-J, Andreae M, Tillmann U (1997): A systematic approach for evaluating the quality of experimental toxicological and ecotoxicological data. Regulatory Toxicology and Pharmacology 25, 1–5

    Article  CAS  Google Scholar 

  • Knacker T, Van Gestel CAM, Jones SE, Soares AMVM, Schallnaß H-J, Förster B, Edwards CA (2004): Ring-testing and field-validation of a Terrestrial Model Ecosystem (TME) — An instrument for testing potentially harmful substances: Conceptual approach and study design. Ecotoxicology 13, 5–23

    Article  Google Scholar 

  • Lanno R, Wells J, Conder J, Bradham K, Basta N (2004): The bioavailability of chemicals in soil for earthworms. Ecotox Envir Safety 57, 39–47

    Article  CAS  Google Scholar 

  • Lock K, Janssen CR, De Coen W (2000): Multivariate test designs to assess the influence of zinc and cadmium bioavailability in soils on the toxicity to Enchytraeus albidus. Environ Toxicol Chem 19, 2666–2671

    Article  CAS  Google Scholar 

  • Lock K, De Schamphelaere KAC, Janssen CR (2002): The effect of lindane on terrestrial invertebrates. Arch Environ Contam Toxicol 42, 217–221

    Article  CAS  Google Scholar 

  • Løkke H, Van Gestel CAM (1998): Handbook of soil invertebrate toxicity tests. John Wiley & Sons, Chichester, UK, 281 pp

    Google Scholar 

  • Maltby L, Blake N, Brock TCM, Van den Brink PJ (2005): Insecticide species sensitivity distributions: The importance of test species selection and relevance to aquatic ecosystems. Environ toxicol Chem 24, 379–388

    Article  CAS  Google Scholar 

  • Mitra J, Rachu K (1998): Detrimental effects of soil residues of DDT on chillies (Capsicum annuum). Fresenium Environ Bull 7, 8–13

    CAS  Google Scholar 

  • Nagel I, Düwel O, Utermann J (2003): Hintergrundwerte für Schwermetalle in Böden Europas — Resümee einer europaweiten Datenauswertung. Bodenschutz 3, 68–73

    Google Scholar 

  • Peijnenburg W, Sneller E, Sijm D, Lijzen J, Traas T, Verbruggen E (2004): Implementation of bioavailability in standard setting and risk assessment. Envir Sci 11, 141–149

    Google Scholar 

  • Posthuma L, Suter GW, Traas TP (2002): Species sensitivity distributions in ecotoxicology. Lewis Publishers, Boca Raton, Florida, USA

    Google Scholar 

  • Römbke J, Jänsch S, Junker T, Pohl B, Scheffczyk A, Schallnass H-J (2006): Improvement of the applicability of ecotoxicological tests with earthworms, springtails and plants for the assessment of metals in natural soils. Environ Toxicol Chem 25, 776–787

    Article  Google Scholar 

  • Römbke J, Jänsch S, Schallnaß H-J, Terytze K (2005): Zusammenstellung und statistische Bearbeitung vorhandener Daten zur Wirkung von ausgewählten Verbindungen auf Bodenorganismen und Ableitung von Bodenwerten für den Pfad ‘Boden-Bodenorganismen’.. Report for the German Federal Environmental Agency (Umweltbundesamt), F+E-Vorhaben Nr. 202 73 266, 167 pp

  • Rothstein B, Schröder D, Isermann K (2004): Variationen der Nährstoff-und Schwermetallgehalte in Böden. Dargestellt an ausgewählten Regionen in Eifel und Hunsrück. UWSF — Z Umweltchem Ökotox 16, 92–98

    CAS  Google Scholar 

  • Rüdel H, Hammel W, Wenzel A (2001): Verteilung und Wirkung von Chrom (VI) am Beispiel unterschiedlich belasteter Böden. UBA-Texte 20/01, 1–114

  • Schmidt GH, Ibrahim NMM, Abdallah MD (1991): Toxicological studies in the long-term effects of heavy metals. Sci Tot Environ 107, 109–133

    Article  CAS  Google Scholar 

  • Scott-Fordsmand JJ, Pedersen MB (1995): Soil quality criteria for selected inorganic compounds. Danish Environmental Protection Agency, Working Report No. 48, 200 pp

  • Smolders E, McGrath SP, Lombi E, Karman CC, Bernhard R, Cools D, Van den Brande K, Van Os B, Walrave N (2003): Comparison of toxicity of zinc for soil microbial processes between laboratory-contamined and polluted field soils. Environ Toxicol Chem 22, 2592–2598

    Article  CAS  Google Scholar 

  • Sorteberg A (1978): Effects of some heavy metals on oats in pot experiments with three different soil types. J Sci Agric Soc Finland 50, 317–334

    CAS  Google Scholar 

  • Spurgeon DJ, Hopkin SP (1999): Seasonal variation in the abundance, biomass and biodiversity of earthworms in soils contaminated with metal emissions from a primary smelting works. J Appl Ecol 36, 173–183

    Article  CAS  Google Scholar 

  • Swift MJ, Heal OW, Anderson JM (1979): Decomposition in terrestrial ecosystems. Studies in Ecology, Vol. 5. Blackwell Scientific Publishers, Oxford, UK, 372 pp

    Google Scholar 

  • Thompson AR, Sans WW (1974): Effects of soil insecticides in southwestern Ontario on non-target invertebrates: Earthworms in pasture. Environ Entomol 3, 305–308

    CAS  Google Scholar 

  • Tyler G, Balsberg Pahlson M, Bengtsson G, Baath E, Tranvik L (1989): Heavy-metal ecology of terrestrial plants, microorganisms and invertebrates. Water Air Soil Poll 47, 189–215

    Article  CAS  Google Scholar 

  • Van Vlaardingen P, Traas TP, Aldenberg T (2003): EtX-2000. Normal distribution based hazardous concentration and potentially affected fraction. Rijksinstituut voor Volksgezondheid en Milieu (RIVM), Bilthoven, The Netherlands

    Google Scholar 

  • Vighi M, Finizio A, Villa S (2006): The Evolution of the Environmental Quality Concept: From the EPA Red Book to the European Water Framework Directive. Env Sci Pollut Res 13, 9–14

    Article  CAS  Google Scholar 

  • VROM (2002): Circulaire streefwaarden en interventiewaarden bodemsanierung. Directoraat-Generaal Milieubeheer, Directie Bodem. DBO/1999226863, 52 pp

  • Wagner C, Løkke H (1991): Estimation of ecotoxicological protection levels from NOEC toxicity data. Wat Res 25, 1237–1242

    Article  CAS  Google Scholar 

  • Wilke B-M, Beylich A, Herrchen M, Kratz W, Marschner A, Necker U, Pieper S, Römbke J, Riepert F, Rück F, Terytze K, Throl C, Von der Trenck T (2002): Eckpunkte zur Beurteilung des Wirkungspfades Bodenverunreinigungen — Bodenorganismen. FA ‘Biologische Bewertung von Böden’ der FG 4 des BVB. In: Rosenkranz D, Bachman G, König W, Einsele G (eds), Handbuch des Bodenschutzes. E. Schmidt Verlag, Berlin, 35. Lfg I/02, Nr. 9310, 60 pp

    Google Scholar 

  • Wilke B-M, Hund-Rinke K, Pieper S, Römbke J, Marschner A (2004): Entwicklung von Prüfwertempfehlungen für ausgewählte Schadstoffe zum Schutz des Bodens als Lebensraum für Bodenorganismen. UWSF — Z Umweltchem Ökotox 16, 155–160

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stephan Jänsch.

Additional information

ESS-Submission Editor: Prof. Zhihong Xu (zhihong.xu@griffith.edu.au)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jänsch, S., Römbke, J., Schallnaß, HJ. et al. Derivation of soil values for the path ‘Soil-Soil Organisms’ for metals and selected organic compounds using species sensitivity distributions. Env Sci Poll Res Int 14, 308–318 (2007). https://doi.org/10.1065/espr2006.06.310

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1065/espr2006.06.310

Keywords

Navigation