Journal of the Operational Research Society

, Volume 47, Issue 1, pp 73–83

The Potential for Endogeneity Bias in Data Envelopment Analysis

  • Chris Orme
  • Peter Smith
Theoretical Paper

DOI: 10.1057/jors.1996.7

Cite this article as:
Orme, C. & Smith, P. J Oper Res Soc (1996) 47: 73. doi:10.1057/jors.1996.7

Abstract

Data envelopment analysis has become an important technique for modelling the relationship between inputs and outputs in the production process, particularly in the public sector. However, whenever measures of the output of public sector activity receive public attention, there is a strong possibility that there will be a feedback from the achieved output to the resources devoted to the activity. In other words, the level of resources is endogenous. The implications of such endogeneity for standard econometric estimation techniques are well known, and methods exist to deal with the problem. Most commentators have assumed that endogeneity poses no analogous problems for DEA because the technique merely places an envelope around feasible production possibilities. Using Monte Carlo simulation techniques, however, this paper shows that the efficiency estimates generated by DEA in the presence of endogeneity can be subject to bias, in the sense that inefficient units using low levels of the endogenous resource may be set tougher efficiency targets than equally inefficient units using more of the resource, particularly when sample sizes are small. The paper concludes that, in such circumstances, great caution should be exercised when comparing efficiency measures for units using different levels of the endogenous input.

Keywords

data envelopment analysiseconometricsefficiencygovernment

Copyright information

© Operational Research Society 1996

Authors and Affiliations

  • Chris Orme
    • 1
  • Peter Smith
    • 2
  1. 1.University of Manchester
  2. 2.University of York