Skip to main content
Log in

Genetic variation of isolated Picea balfouriana populations from the southeast of the Qinghai-Tibet Plateau

Variation génétique des populations isolées de Picea balfouriana du sud-est du plateau Qinghai-Tibet

  • Original Article
  • Published:
Annals of Forest Science Aims and scope Submit manuscript

Abstract

  • • The objective of this work is to estimate the level of genetic variation and pattern of genetic structure of isolated Picea balfouriana populations.

  • • Nine SSR markers and six STS markers were assayed in ten natural populations of P. balfouriana, which is a regionally distributed conifer species in the southeast of the Qinghai-Tibet Plateau.

  • • Expected heterozygosity ranged from 0.592 to 0.710 based on SSRs, and from 0.489 to 0.635 based on STS markers. The SSR and STS markers revealed that 11% and 12% of variation, respectively, was present among populations. However, the SSRs showed no deviation from the Hardy-Weinberg equilibrium (F IS = −0.030), unlike the STS markers (F IS = 0.249). In addition, assignment methods showed that individuals from the same sampling site usually cluster together.

  • • Our results indicated that the distribution of genetic variation and population genetic structure of P. balfouriana may be attributed to habitat fragmentation and heterogeneous environments caused by the complex topographic environment in the Qinghai-Tibet Plateau. The population genetic information obtained in our study will benefit the development and utilization of appropriate conservation and breeding strategies for P. balfouriana.

Résumé

  • • L’objectif de ce travail a été d’estimer le niveau de variation génétique et le modèle de la structure génétique de populations isolées de Picea balfouriana.

  • • Neuf marqueurs SSR et six marqueurs STS ont été testés sur dix populations naturelles de P. balfouriana qui est un conifère distribué au niveau régional dans le sud-est du plateau Qinghai-Tibet.

  • • L’hétérozygotie attendue allait de 0,592 à 0,710 sur la base des marqueurs SSR, et de 0,489 à 0,635 sur la base des marqueurs STS. Les marqueurs SSR et STS ont révélé que 11 % et 12 % de la variation, respectivement, étaient présentes parmi les populations. Toutefois, les marqueurs SSR ne montraient aucun écart par rapport à l’équilibre de Hardy-Weinberg (F I = −0,030) à la différence des marqueurs STS F I = 0,249).Les méthodes d’assignation bayésiennes ont montré que les individus d’un même site d’échantillonnage étaient habituellement groupés ensemble.

  • • Nos résultats pourraient indiquer que la distribution de la variation génétique et la structure génétique de la population de Pinus balfouriana peuvent être attribuées à la fragmentation de l’habitat et à des environnements hétérogènes causés par un environnement topographique complexe dans le sud-est du plateau Qinghai-Tibet. L’information génétique obtenue sur la population dans notre étude sera bénéfique pour le développement et l’utilisation appropriés des stratégies de conservation et de sélection de Pinus balfouriana.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • Acheré V., Faivre R.P., Jeandroz S., Besnard G., Markussen T., Aragones A., Fladung M., Ritter E., and Favre J.M., 2004. A full saturated linkage map of Picea abies including AFLP, SSR, ESTP, 5S rDNA and morphological markers. Theor. Appl. Genet. 108: 1602–1613.

    Article  PubMed  Google Scholar 

  • Allendorf F.W. and Leary R.F., 1986. Heterozygosity and fitness in natural populations of animals. Conservation Biology. In: Soule M.E. (Ed.), Sunderland, MA: Sinauer, the science of scarcity and diversity, pp. 57–76.

    Google Scholar 

  • Bertorelle G. and Excoffier L., 1998. Inferring admixture proportions from molecular data. Mol. Biol. Evol. 15: 1298–1311.

    PubMed  CAS  Google Scholar 

  • Bouillé M. and Bousquet J., 2005. Trans-species shared polymorphisms at orthologous nuclear gene loci among distant species in the conifer Picea (Pinaceae): implications for the long-term maintenance of genetic diversity in trees. Am. J. Bot. 92: 63–73.

    Article  PubMed  Google Scholar 

  • Brookfield J.F.Y., 1996. A simple new method for estimating null allele frequency from heterozygote deficiency. Mol. Ecol. 5: 453–455.

    PubMed  CAS  Google Scholar 

  • Collaborating Group for Vegetation of Sichuan, 1980. Vegetation of Sichuan. Sichuan People’s press, Chengdu, pp. 159–162 (in Chinese).

    Google Scholar 

  • ECCAS (Editor Committee of the Chinese Academy of Sciences for Flora of China), 1978. Flora of China Vol. 7, science press, Beijing, pp. 153–155 (in Chinese).

    Google Scholar 

  • Editorial Committee of the Sichuan Flora, 1983. Flora Sichuanica Vol. 2, Sichuan people’s press, Chengdu, pp. 77–79 (in Chinese).

    Google Scholar 

  • Editorial Committee of Forest of China, 1999. Forest of China Vol. 2. China forestry publishing house, Beijing, pp. 731–743 (in Chinese).

    Google Scholar 

  • Evanno G., Regnaut S., and Goudet J., 2005. Detecting the number of clusters of individuals using the software Structure: a simulation study. Mol. Ecol. 14: 2611–2620.

    Article  PubMed  CAS  Google Scholar 

  • Excoffier L., Laval G., and Schneider S., 2005. Arlequin (version 3.0): an integrated software package for population genetics data analysis. Evol. Bioinform. Online 1: 47–50.

    PubMed  CAS  Google Scholar 

  • Falush D., Stephens M., and Pritchard J.K., 2003. Inference of population structure using multilocus genotype data: linked loci and correlated allele frequencies. Genetics 164: 1567–1587.

    PubMed  CAS  Google Scholar 

  • Gapare W.J., Aitken S.N., and Ritland C.E., 2005. Genetic diversity of core and peripheral Sitka spruce (Picea sitchensis (Bong.) Carr) populations: implications for conservation of widespread species. Biol. Conserv. 123: 113–123.

    Article  Google Scholar 

  • Ge X.J., Zhang Y.M., Hao G., and Chiang T.Y., 2005. Strong genetic differentiation of the East-Himalayan Megacodon stylophorus (Gentianaceae) detected by Inter-Simple Sequence Repeats (ISSR). Biodivers. Conserv. 14: 849–861.

    Article  Google Scholar 

  • Goudet J., 2001. FSTAT, A Program to Estimate and test gene diversities and fixation indices version 2.9.3. Available at: www.unil.ch/izea/softwares/fstat.html.

  • Guo S.W. and Thompson E.A., 1992. Performing the exact test of Hardy-Weinberg proportions for multiple alleles. Biometrics 48: 361–372.

    Article  PubMed  CAS  Google Scholar 

  • Hochberg Y., 1988. A sharper Bonferroni procedure for multiple tests of significance. Biometrika 75: 800–802.

    Article  Google Scholar 

  • Li Y.C., Korol A.B., Fahima T., Beiles A., and Nevo E., 2002. Microsatellites: genomic distribution, putative functions, and mutational mechanisms: a review. Mol. Ecol. 11: 2453–2465.

    Article  PubMed  CAS  Google Scholar 

  • Liu J.M., Wang L., Geng Y.P., Wang Q.B., Luo L.J., and Zhong Y., 2006. Genetic diversity and population structure of Lamiophlomis rotata (Lamiaceae), an endemic species of Qinghai-Tibet Plateau. Genetica 128: 385–394.

    Article  PubMed  Google Scholar 

  • Liu Z.L., Fang J.Y., and Piao S.L., 2002. Geographical distribution of species in genera Abies, Picea and Larix in china. Acta Geogr. Sin. 57: 577–589.

    Google Scholar 

  • Lu Z.X., Wang Y.H., Peng Y.H., Korpelainen H., and Li C.Y., 2005. Genetic diversity of Populus cathayana Rehd populations in southwestern China revealed by ISSR markers. Plant Sci. 170: 407–412.

    Article  Google Scholar 

  • Luo J.X., Wang Y.H., Korpelainen H., and Li C.Y., 2005. Allozyme variation in natural populations of Picea asperata. Silva Fenn. 39: 167–176.

    Google Scholar 

  • Maghuly F., Pinsker W., Praznik W., and Fluch S., 2006. Genetic diversity in managed subpopulations of Norway spruce [Picea abies (L.) Karst.]. For. Ecol. Manage. 222: 266–271.

    Article  Google Scholar 

  • Mantel N., 1967. The detection of disease clustering and a generalized regression approach. Cancer Res. 27: 209–220.

    PubMed  CAS  Google Scholar 

  • Meloni M., Perini D., and Binelli G., 2007. The distribution of genetic variation in Norway spruce (Picea abies Karst.) populations in the western Alps. J. Biogeogr. 34: 929–938.

    Article  Google Scholar 

  • Myers N., Mittermeier R.A., Mittermeier C.G., da Fonseca G.A.B., and Kent J., 2000. Biodiversity hotspots for conservation priorities. Nature 403: 853–858.

    Article  PubMed  CAS  Google Scholar 

  • Nei M., 1972. Genetic distance between populations. Am. Nat. 106: 283–292.

    Article  Google Scholar 

  • Olivier L., 2002. Populations 1.2.28. Available at: http://bioinformatics.org/~tryphon/populations/.

  • Oliveira E.J., Pádua J.G., Zucchi M.I., Vencovsky R., and Vieira M.L.C., 2006. Origin, evolution and genome distribution of microsatellites. Genet. Mol. Biol. 29: 294–307.

    Article  CAS  Google Scholar 

  • Ohsawa T., Saito Y., Sawada H., and Ide Y., 2008. Impact of altitude and topography on the genetic diversity of Quercus serrata populations in the Chichibu Mountains, central Japan. Flora 203: 187–196.

    Google Scholar 

  • Page R.D.M., 1996. TREEVIEW: An application to display phylogenetic trees on personal computers. Comput. Appl. Biosci. 12: 357–358.

    PubMed  CAS  Google Scholar 

  • Panaud O., Chen X., and McCouch S.D., 1996. Development of microsatellite markers and characterization of sample sequence lengthen polymorphism (SSLP) in rice (Oryzastiva L.). Mol. Gen. Genet. 252: 597–607.

    PubMed  CAS  Google Scholar 

  • Peakall R. and Smouse P.E., 2006. GenAlEx 6: genetic analysis in Excel. Population genetic software for teaching and research. Mol. Ecol. Notes 6: 288–295.

    Article  Google Scholar 

  • Pelgas B., Beauseigle S., Acheré V., Jeandroz S., Bousquet J., and Isabel N., 2006. Comparative genome mapping among Picea glauca, P. mariana × P. rubens and P. abies, and correspondence with other Pinaceae. 113: 1371–1393.

    CAS  Google Scholar 

  • Peng Y.H., Lu Z.X., Chen K., Luukanen O., Korpelainen H., and Li C.Y., 2005. Population genetic survey of Populus cathayana originating from Southeastern Qinghai-Tibetan plateau of China based on SSR markers. Silvae Genet. 54: 116–122.

    Google Scholar 

  • Perry D.J. and Bousquet J., 1998a. Sequence-tagged-site (STS) markers of arbitrary genes: development, characterization and analysis of linkage in black spruce. Genetics 149: 1089–1098.

    PubMed  CAS  Google Scholar 

  • Perry D.J. and Bousquet J., 1998b. Sequence-tagged-site (STS) markers of arbitrary genes: the utility of black spruce-derived STS primers in other conifers. Theor. Appl. Genet. 97: 735–743.

    Article  CAS  Google Scholar 

  • Perry D.J. and Bousquet J., 2001. Genetic diversity and mating system of post-fire and post-harvest black spruce: an investigation using codominant sequence-tagged-site (STS) markers. Can. J. For. Res. 31: 32–40.

    Article  Google Scholar 

  • Pfeiffer A., Olivieri A.M., and Morgante M., 1997. Identification and characterization of microsatellites in Norway spruce (Picea abies K.). Genome 40: 411–419.

    Article  PubMed  CAS  Google Scholar 

  • Pritchard J.K., Stephens M., and Donnelly P., 2000. Inference of population structure using multilocus genotype data. Genetics 155: 945–959.

    PubMed  CAS  Google Scholar 

  • Rajora O.P., Rahman M.H., Buchert G.P., and Dancik B.P., 2000. Microsatellite DNA analysis of genetic effects of harvesting in old-growth eastern white pine (Pinus strobes) Ontario, Canada. Mol. Ecol. 9: 339–348.

    Article  CAS  Google Scholar 

  • Raymond M. and Rousset F., 1995. GENEPOP (version 1.2): population genetics software for exact tests and ecumenicism. J. Hered. 86: 248–249.

    Google Scholar 

  • Rice W.R., 1989. Analyzing tables of statistical tests. Evolution 43: 223–225.

    Article  Google Scholar 

  • Scotti I., Magni F., Paglia G.P., and Morgante M., 2002a. Trinucleotide microsatellites in Norway spruce (Picea abies): their features and the development of molecular markers. Theor. Appl. Genet. 106: 40–50.

    PubMed  CAS  Google Scholar 

  • Scotti I., Paglia G.P., Magni F., and Morgante M., 2002b. Efficient development of dinucleotide microsatellite markers in Norway spruce (Picea abies Karst.) through dot-blot selection. Theor. Appl. Genet. 104: 1035–1041.

    Article  PubMed  CAS  Google Scholar 

  • Scotti I., Paglia G.P., Magni F., and Morgante M., 2006. Population genetics of Norway spruce (Picea abies Karst.) at regional scale: sensitivity of different microsatellite motif classes in detecting differentian. Ann. For. Sci. 63: 485–491.

    Article  CAS  Google Scholar 

  • Selkoe K.A. and Toonen R.J., 2006. Microsatellites for ecologists: a practical guide to using and evaluating microsatellite markers. Ecol. Lett. 9: 615–629.

    Article  PubMed  Google Scholar 

  • Szmidt A.Z. and Wang X.R., 1993. Molecular systematics and genetic differentiation of Pinus sylvestris (L.) and P. densiflora (Sieb. et Zucc.). Theor. Appl. Genet. 86: 159–165.

    Article  CAS  Google Scholar 

  • Thomas B.R., Macdonald S.E., Hicks M., Adams D.L., and Hodgetts R.B., 1999. Effects of reforestation methods on genetic diversity of lodgepole pine: an assessment using microsatellite and randomly amplified polymorphic DNA markers. Theor. Appl. Genet. 98: 793–801.

    Article  Google Scholar 

  • Wang Y.H., Korpelainen H., and Li C.Y., 2006. Microsatellite polymorphism in the edaphic spruce, Picea asperata, originating from the mountains of China. Silva Fenn. 40: 561–575.

    Google Scholar 

  • Weir B.S. and Cockerham C.C., 1984. Estimating F-statistics for the analysis of population structure. Evolution 38: 1358–1370.

    Article  Google Scholar 

  • Wright S., 1969. Evolution and genetics of populations. Vol. 2, The theory of gene frequencies, Chicago, University of Chicago Press.

    Google Scholar 

  • Xia T., Meng L., Mao K., Tian B., Miehe G., and Liu J., 2008. Genetic variation in the Qinghai-Tibetan plateau endemic and endangered conifer Cupressus gigantea, detected using RAPD and ISSR markers. Silvae Genet. 57: 85–92.

    Google Scholar 

  • Ying T.S., 1989. Areography of the gynmosperms of China (1) — distribution of the Pinaceae of China. Acta Phytotaxonomica Sinica 27: 27–38.

    Google Scholar 

  • Yuan R.J., Wang B.R., and Yang S.H., 2007. Comparative study on Picea and Abies in Hengduan mountainous areas. Journal of West China Forestry Science 36: 16–21.

    Google Scholar 

  • Zhang Q., Chiang T.Y., George M., Liu J.Q., and Abbott R.J., 2005. Phylogeography of the Qinghai-Tibetan Plateau endemic Juniperus przewalskii (Cupressaceae) inferred from chloroplast DNA sequence variation. Mol. Ecol. 14: 3513–3524.

    Article  PubMed  CAS  Google Scholar 

  • Zhang X.L., Yuan Y.M., and Ge X.J., 2007. Genetic structure and differentiation of Gentiana atuntsiensis. In: W.W. Smith and G.S.T.N. Ho (Eds), (Gentianaceae) as revealed by ISSR markers. Bot. J. Linn. Soc. 154: 225–232.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chunyang Li.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lu, Z., Wang, Y., Zhang, X. et al. Genetic variation of isolated Picea balfouriana populations from the southeast of the Qinghai-Tibet Plateau. Ann. For. Sci. 66, 607 (2009). https://doi.org/10.1051/forest/2009052

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1051/forest/2009052

Keywords

Mots-clés

Navigation