Skip to main content
Log in

Correlated evolution of mating behaviour and morphology in large carpenter bees (Xylocopa)

Évolution corrélée du comportement d’accouplement et de la morphologie chez les abeilles charpentières (Xylocopa sp.)

Korrelierte Evolution des Paarungsverhaltens und der Morphologie bei großen Holzbienen (Xylocopa sp)

  • Original Article
  • Published:
Apidologie Aims and scope Submit manuscript

Abstract

Carpenter bees (Xylocopa) display variation in mating strategies. In several subgenera males defend territories that contain resources for females. In other subgenera males defend a small non-resource territory. Here, we investigate the correlation between three morphological traits and mating strategy. We found associations between mating strategy and male eye size, size of the mesosomal gland and sexual colour dimorphism, as well as correlative evolution between the morphological characters. Analysis of the evolutionary pathways shows that resource defence, small glands and monomorphic sexes are ancestral states. Increases in gland size seem to precede or coincide with changes in mating behaviour, but changes towards sexual dimorphism follow changes in mating behaviour. Once a non-resource defence strategy with correlated morphology has evolved there are no reversals to the ancestral states. We discuss the types of selection that may have caused these correlative changes.

Zusammenfassung

Große Holzbienen (Gattung Xylocopa) sind sehr unterschiedlich in ihren Paarungsstrategien. In vielen Untergattungen verteidigen die Männchen Territorien, die Ressourcen für die Weibchen enthalten, wie etwa Blüten oder Nistplätze. In anderen Unterordnungen werden verteilte Paarungsplätze (Leks) gefunden, in denen einzelne Männchen kleine Territorien verteidigen, die keine Ressourcen enthalten. Zusätzlich zu dieser Variation der Paarungs Strategien findet man große Unterschiede in der Morphologie der Männchen und in der Farbverschiedenheit zwischen den Geschlechtern. Die zwei wichtigsten morphologischen Unterschiede sind die Größe der männlichen mesosomalen Drüsen, die ein Paarungspheromon erzeugen und die Größe der Augen der Männchen. Sie können erheblich größer oder gleich groß sein wie die der Weibchen.

Eine auf zwei nuklearen und zwei mitochondrialen Gensequenzen beruhende gut aufgelöste Phylogenie der Untergattungen (Leys, 2002) erlaubt die Nutzung einer Bayesischen Analyse (Bayestraits) zur Untersuchung des Zusammenhangs zwischen den morphologischen Charakteren (Augengröße, mesosomale Drüsengröße und sexuelle Färbung des Männchens) und der Paarungsstrategie.

Wir fanden eine signifikante Assoziation zwischen der Paarungsstrategie und den morphologischen Eigenschaften, sowie eine signifikante korrelative Evolution zwischen den morphologischen Charakteren. Eine Analyse der evolutionären Abläufe legt nahe, dass die Verteidigung von Ressourcen, kleine Drüsen und gleichgestaltige Geschlechter den ursprünglichen Zustand darstellen. Allerdings blieb der ursprüngliche Zustand der Augengröße unklar. Der Zuwachs der Drüsengröße ging offensichtlich der Änderung im Paarungsverhaltens voran oder ist gleichzeitig aufgetreten, während Änderungen des Sexualdimorphismus erst nach den Änderungen des Paarungsverhaltens erfolgten. Sobald sich eine ressourcenunabhängige Verteidigungsstrategie mit den korrelierten morphologischen Veränderungen in Richtung größerer Drüsen, Geschlechtsdimorphismus und normal großen Augen entwickelt hatte, gab es keine Rückkehr zum ursprünglichen Zustand.

Die Assoziation zwischen großen Augen und der Strategie der Ressourcenverteidigung könnte das Ergebnis sexueller Selektion innerhalb des Geschlechts sein, bei der die großen Augen den Männchen ermöglichen, eindringende Männchen rasch zu erkennen und zu verjagen. Ohne diese Möglichkeit auszuschließen ist es ebenfalls möglich, dass große Augen durch sexuelle Selektion zwischen den Geschlechtern entstanden, wenn die Männchen, die Weibchen rasch erkennen, einen Selektionsvorteil haben. Die Assoziation zwischen großen mesosomalen Drüsen und der Verteidigung von ressourcenfreien Territorien ist wahrscheinlich ein Resultat von zwischengeschlechtlicher sexueller Selektion, da Männchen mit großen Drüsen Weibchen über größere Entfernungen anlocken können. Wir nehmen weiter an, dass der Färbungsdimorphismus zwischen Männchen und Weibchen das Resultat einer natürlichen Selektion auf kryptische Färbung der Männchen ist.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Alcock J., Barrows E.M., Gordon G., Hubbard L.J., Kirkendale L., Pyle D.W., Ponder T.L., Zalom K.G. (1978) The ecology and evolution of male reproductive behaviour in the bees and wasps, J. Linn. Soc. Lond. Zool. 64, 293–326.

    Article  Google Scholar 

  • Alcock J., Johnson M.D. (1990) Female choice in the carpenter bee Xylocopa varipuncta (Hymenoptera: Anthophoridae), J. Zool., Lond. 221, 195–204.

    Article  Google Scholar 

  • Alcock J., Smith A.P. (1987) Hilltopping, leks and female choice in the carpenter bee Xylocopa (Neoxylocopa) varipuncta, J. Zool., Lond. 211, 1–10.

    Article  Google Scholar 

  • Andersson M.B. (1994) Sexual selection, Princeton Univ. Press, New Jersey.

    Google Scholar 

  • Björklund M. (1990) A phylogenetic interpretation of sexual dimorphism in body size and ornament in relation to mating system in birds, J. Evol. Biol. 3, 171–183.

    Article  Google Scholar 

  • Bleiweiss R. (1997) Covariation of sexual dichromatism and plumage colors in lekking and nonlekking birds — A comparative analysis, Evol. Ecol. 11, 217–235.

    Article  Google Scholar 

  • Bradbury J.W. (1981) The evolution of leks, in: Alexander R.D., Tinkle D.W. (Eds.), Natural Selection and Social Behavior: Recent Research and New Theory, Chiron Press, New York, pp. 138–169.

    Google Scholar 

  • Brown W.D., Crespi B.J., Choe J.C. (1997) Sexual conflict and the evolution of mating systems, in: Choe J.C., Crespi B.J. (Eds.), Mating systems in insects and arachnids. Cambridge Univ. Press, Cambridge, pp. 352–377.

    Chapter  Google Scholar 

  • Darwin C. (1871) The descent of man and selection in relation to sex, John Murray, London.

    Book  Google Scholar 

  • Eickwort G.C., Ginsberg H.S. (1980) Foraging and mating behaviour in Apoidea, Annu. Rev. Entomol. 25, 421–446.

    Article  Google Scholar 

  • Emlen S.T., Oring L.W. (1977) Ecology, sexual selection, and the evolution of animal mating systems, Science 197, 215–223.

    Article  PubMed  CAS  Google Scholar 

  • Frankie G.W., Vinson S.B., Lewis A. (1979) Territorial behaviour in male Xylocopa micans (Hymenoptera: Anthophoridae), J. Kans. Entomol. Soc. 52, 313–323.

    Google Scholar 

  • Gerling D., Hurd Jr. P.D., Hefetz A. (1983) Comparative behavioral biology of two Middle East species of carpenter bees (Xylocopa Latreille) (Hymenoptera: Apoidea), Smithson. Contrib. Zool. 369, 1–33.

    Google Scholar 

  • Gerling D., Velthuis H.H.W., Hefetz A. (1989) Bionomics of the large carpenter bees of the genus Xylocopa, Annu. Rev. Entomol. 34, 163–190.

    Article  Google Scholar 

  • Hardy I.C.W., Mayhew P.J. (1998) Sex ratio, sexual dimorphism and mating structure in bethylid wasp,. Behav. Ecol. Sociobiol 42, 383–395.

    Article  Google Scholar 

  • Hefetz A. (1983) Function of secretion of mandibular gland of males in territorial behavior of Xylocopa sulcatipes (Hymenoptera: Anthophoridae), J. Chem. Ecol. 9, 923–931.

    Article  CAS  Google Scholar 

  • Höglund J. (1989) Size and plumage dimorphism in lek-breeding birds: a comparative analysis, Am. Nat. 134, 72–87.

    Article  Google Scholar 

  • Höglund J., Sillén-Tullberg B. (1994) Does lekking promote the evolution of male biased size dimorphism in birds? On the use of comparative approaches, Am. Nat. 144, 881–889.

    Article  Google Scholar 

  • Huelsenbeck J.P., Ronquist F. (2001) MRBAYES: Bayesian inference of phylogeny, Bioinformatics 17, 754–755.

    Article  PubMed  CAS  Google Scholar 

  • Hurd P. Jr., Moure J.S. (1963) A classification of the large carpenter bees (Xylocopini) (Hymenoptera: Apoidea), Univ. California Publ. Entomol. 29, 1–365.

    Google Scholar 

  • Hurd Jr. P.D. (1955) The carpenter bees of California (Hymenoptera: Apoidea), Bull Calif. Insect Survey 4, 35–72.

    Google Scholar 

  • Ims R.A. (1988) The potential for sexual selection in males: Effect of sex ratio and spatio-temporal distribution of receptive females, Evol. Ecol. 4, 57–61.

    Article  Google Scholar 

  • Johnson K.P., Lanyon S.M. (2000) Evolutionary changes in color patches of blackbirds are associated with marsh nesting, Behav. Ecol. 11, 515–519.

    Article  Google Scholar 

  • Kruger O. (2005) The evolution of reversed sexual size dimorphism in hawks, falcons and owls: A comparative study, Evol. Ecol. 19, 467–486.

    Article  Google Scholar 

  • Kruger O., Davies N.B., Sorensen M.D. (2007) The evolution of sexual dimorphism in parasitic cuckoos: sexual selection of coevolution? Proc. R. Soc. B 274, 1553–1560.

    Article  PubMed  CAS  Google Scholar 

  • Leys R. (2000a) A revision of the Australian carpenter bees, genus Xylocopa Latreille, subgenera Koptortosoma Gribodo and Lestis Lepeletier and Serville (Hymenoptera Apidae), Invertebr. Taxon. 14, 115–136.

    Article  Google Scholar 

  • Leys R. (2000b) Mate locating strategies of the green carpenter bees Xylocopa (Lestis) aeratus, and X. (L.) bombylans, J. Zool. Lond. 252, 453–462.

    Article  Google Scholar 

  • Leys R., Cooper S.J.B., Schwarz M.P. (2002) Molecular phylogeny and historical biogeography of the large carpenter bees, genus Xylocopa (Hymenoptera: Apidae), Biol. J. Linn. Soc. 77, 249–266.

    Article  Google Scholar 

  • Markow T.A. (2002) Female remating, operational sex ratio, and the arena of sexual selection in Drosophila, Evolution 56, 1725–1734.

    PubMed  Google Scholar 

  • McAuslane H.J., Vinson S.B., Williams H.J. (1990) Change in mandibular and mesosomal gland contents of male Xylocopa micans (Hymenoptera: Anthophoridae), J. Chem. Ecol. 16, 1877–1885.

    Article  CAS  Google Scholar 

  • Michener C.D. (1990) Castes in Xylocopine bees, in: W. Engels (Ed.), Social insects, an evolutionary approach to castes and reproduction, Berlin Springer Verlag, pp. 123–146.

    Google Scholar 

  • Minckley R.L. (1994) Comparative morphology of the mesosomal ‘gland’ in large carpenter bees (Apidae: Xylocopini), Zool. J. Linn. Soc. 53, 291–308.

    Google Scholar 

  • Minckley R.L., Buchmann S.L., Wcislo W.T. (1991) Bioassay evidence for a sex attractant pheromone in the large carpenter bee Xylocopa varipuncta (Hymenoptera: Anthophoridae), J. Zool. Lond. 224, 285–291.

    Article  Google Scholar 

  • Oakes E.J. (1992) Lekking and the evolution of sexual dimorphism in birds: comparative approaches, Am. Nat. 140, 665–694.

    Article  PubMed  CAS  Google Scholar 

  • Osten T. (1989) Vergleichend-funktionsmorphologische Untersuchungen des Paarungsverhalten von Platynopoda and Mesotrichia (Hymenoptera: Xylocopini), Stuttgarter Beitr. Naturkd. Ser. A 433, 1–18.

    Google Scholar 

  • Pagel M., Meade A. (2006) Bayesian analysis of correlated evolution of discrete characters by reversible jump markov chain monte carlo, Am. Nat. 167, 808–825.

    Article  Google Scholar 

  • Payne R.B. (1984) Sexual selection, lek and arena behavior, and sexual size dimorphism in birds, Ornithol. Monogr. 33, 1–53.

    Google Scholar 

  • Posada D., Crandall K.A. (1998) Modeltest: testing the model of DNA substitution, Bioinformatics 14, 817–818.

    Article  PubMed  CAS  Google Scholar 

  • Rambaut A., Drummond A. (2005) TRACER version 1.3: MCMC Trace File Analyser Program distributed by the authors at http:// evolve.zoo.ox.ac.uk/software.html (accessed on 25 October 2007).

  • Rodríguez F., Oliver J.F., Marín A., Medina J.R. (1990) The general stochastic model of nucleotide substitutions, J. Theor. Biol. 142, 485–501.

    Article  PubMed  Google Scholar 

  • Stark R.E. (1990) Untersuchungen zur Brutbiologie und zum Sozialverhalten der Großen Holzbiene Xylocopa sulcatipes Maa. Dissertation, Albert-Ludwigs-Universität Freiburg.

  • Stuart-Fox D., Moussalli A. (2007) Sex-specific ecomorphological variation and the evolution of sexual dimorphism in dwarf chameleons (Bradypodion spp.), J. Evol. Biol. 20, 1073–1081.

    Article  PubMed  CAS  Google Scholar 

  • Temeles E.J., Pan I.L., Brennan J.L., Horwitt J.N. (2000) Evidence for Ecological Causation of Sexual Dimorphism in a Hummingbird, Science 289, 441–443.

    Article  PubMed  CAS  Google Scholar 

  • Velthuis H.H.W., Camargo J.M.F. (1975a) Observations on male territories in a carpenter bee Xylocopa (Neoxylocopa) hirsutissima Maidl (Hymenoptera: Anthophoridae), Z. Tierpsychol. 38, 409–418.

    Article  Google Scholar 

  • Velthuis H.H.W., Camargo J.M.F. (1975b) Further observations on the function of male territories in the carpenter bee Xylocopa (Neoxylocopa) hirsutissima Maidl (Anthophoridae, Hymenoptera), Neth. J. Zool. 25, 516–528.

    Article  Google Scholar 

  • Velthuis H.H.W., Gerling D. (1980) Observations on territoriality and mating behaviour of the carpenter bee Xylocopa sulcatipes, Entomol. Exp. Appl. 28, 82–91.

    Article  Google Scholar 

  • Westneat D.F., Sherman P.W., Morton M.L. (1990) The ecology and evolution of extra-pair copulations, Curr. Ornithol. 7, 331–369.

    Google Scholar 

  • Yang Z. (1996) Among-site rate variation and its impact on phylogenetic analyses, Trends Ecol. Evol. 11, 367–372.

    Article  PubMed  CAS  Google Scholar 

References

  • Alcock J. (1991) Mate-locating behaviour of Xylocopa californica arizonensis Cresson (Hymenoptera: Anthophoridae), J. Kans. Entomol. Soc. 64, 349–356.

    Google Scholar 

  • Alcock J. (1993) Differences in site fidelity among territorial males of the carpenter bee Xylocopa varipuncta (Hymenoptera: Anthophoridae), Behaviour 125, 199–217.

    Article  Google Scholar 

  • Alcock J., Smith A.P. (1987) Hilltopping, leks and female choice in the carpenter bee Xylocopa (Neoxylocopa) varipuncta, J. Zool., Lond. 211, 1–10.

    Article  Google Scholar 

  • Andersen J.F., Buchmann S.L., Weisleider D., Plattner R.D., Minckley R.M. (1988) Identification of thoracic gland constituents from male Xylocopa spp. Latreille (Hymenoptera: Anthophoridae) from Arizona, J. Chem. Ecol. 14, 1153–1162.

    Article  CAS  Google Scholar 

  • Anzenberger G. (1977) Ethological study of African carpenter bees of the genus Xylocopa (Hymenoptera, Anthophoridae), Z. Tierpsychol. 44, 337–374.

    Article  PubMed  CAS  Google Scholar 

  • Balduf W.V. (1962) Life of the carpenter bee, Xylocopa virginica (Linn) (Xylocopidae, Hymenoptera), Ann. Entomol. Soc. Am. 55, 263–271.

    Google Scholar 

  • Barrows E.M. (1983) Male territoriality in the carpenter bee Xylocopa virginica virginica, Anim. Behav. 31, 806–813.

    Article  Google Scholar 

  • Bennet F.D. (1966) Observations on the behaviour of males of the West Indian carpenter bees, Xylocopa mordax Smith, on Nevis Island (Hymenoptera: Apidae), Pan-Pac. Entomol. 42, 246.

    Google Scholar 

  • Cruden R.W. (1966) Observations on the behavior of Xylocopa c. californica and X. tabaniformis orpifex, Pan-Pac. Entomol. 42, 111–119.

    Google Scholar 

  • Ducke A. (1901) Beobachtungen über Blütenbesuch, Erscheinungszeit der bei Pará vorkommender Bienen, Z. Syst. Hym. u. Dipt. 1, 49–67.

    Google Scholar 

  • Frankie G.W., Vinson S.B., Lewis A. (1979) Territorial behaviour in male Xylocopa micans (Hymenoptera: Anthophoridae), J. Kans. Entomol. Soc. 52, 313–323.

    Google Scholar 

  • Gerling D., Hermann H.R. (1978) Biology and mating behaviour of Xylocopa virginica L. (Hymenoptera, Anthophoridae), Behav. Ecol. Sociobiol. 3, 99–111.

    Article  Google Scholar 

  • Gerling D., Hurd Jr. P.D., Hefetz A. (1983) Comparative behavioral biology of two Middle East species of carpenter bees (Xylocopa Latreille) (Hymenoptera: Apoidea), Smithson. Contrib. Zool. 369, 1–33.

    Google Scholar 

  • Houston T.F. (1974) Notes on the behaviour of an Australian carpenter bee, genus Xylocopa Latr. (Hymneoptera: Xylocopinae), Aust. Entomol. Mag. 2, 36–38.

    Google Scholar 

  • Hurd Jr. P., Moure J.S. (1963) A classification of the large carpenter bees (Xylocopini) (Hymenoptera: Apoidea), Univ. Calif. Publ. Entomol. 29, 1–365.

    Google Scholar 

  • Hurd Jr. P.D. (1958) Observations on the nesting habits of some new world carpenter bees with remarks on their importance in the problem of species formation (Hymenoptera: Apoidea), Ann. Entomol. Soc. Am. 51, 365–375.

    Google Scholar 

  • Janzen D.H. (1964) Notes on the behavior of four subspecies of the carpenter bee Xylocopa (Notoxylocopa) tabaniformis, in Mexico, Ann. Entomol. Soc. Am. 57, 296–301.

    Google Scholar 

  • Janzen D.H. (1966) Notes on the behavior of the carpenter bee Xylocopa fimbriata in Mexico (Hymenoptera: Apoidea), J. Kans. Entomol. Soc. 39, 633–641.

    Google Scholar 

  • Leys R. (2000b) Mate locating strategies of the green carpenter bees Xylocopa (Lestis) aeratus, and X. (L.) bombylans, J. Zool. Lond. 252, 453–462.

    Article  Google Scholar 

  • Lieftinck M.A. (1955) The carpenter bees (Xylocopa Latr.) of the Lesser Sunda Islands and Tanimbar, Verhand. Naturforsch. Ges. Basel 66, 5–32.

    Google Scholar 

  • Lieftinck M.A. (1956) Revision of the carpenter bees (Xylocopa Latr.) of the Moluccan islands, with notes on other Indo-Australian species, Tijdschr. Entomol. 99, 55–73.

    Google Scholar 

  • Lieftinck, M.A. (1957) Revision of the carpenter-bees (Xylocopa Latr., subgenus Maiella Michener) of the Papuan region (Hymenoptera, Apoidea), Nova Guin. (ns) 8, 325–376.

    Google Scholar 

  • Linsley E.G. (1965) Notes on male territorial behavior in the Galápagos carpenter bee (Hymenoptera: Apidae), Pan-Pac. Entomol. 41, 158–161.

    Google Scholar 

  • Linsley E.G. (1976) Defensive behavior of males about plants not visited by their females (Hymenoptera, Apoidea), Pan-Pac. Entomol. 52, 177–178.

    Google Scholar 

  • Malyshev S.J. (1931) Lebensgeschichte der Holzbienen, Xylocopa Latr. (Apoidea), Z. Morphol. u. Ökol. der Tiere 23, 754–809.

    Article  Google Scholar 

  • Marshall L.D., Alcock J. (1981) The evolution of the mating system of the Carpenter bee Xylocopa varipuncta (Hymenoptera: Anthophoridae), J. Zool., Lond. 193, 315–324.

    Article  Google Scholar 

  • Minckley R.L. (1994) Comparative morphology of the mesosomal ‘gland’ in large carpenter bees (Apidae: Xylocopini), Zool. J. Linn. Soc. 53, 291–308.

    Google Scholar 

  • O’Brien L.B., O’Brien C.W. (1966) Observations on territoriality and the new nesting substrate of Xylocopa californica arizonensis Cresson, Pan-Pac. Entomol. 42, 27–29.

    Google Scholar 

  • Osten T. (1989) Vergleichend-funktionsmorphologische Untersuchungen des Paarungsverhaltens von Platynopoda and Mesotrichia (Hymenoptera: Xylocopini), Stuttgarter Beitr. Naturkd. Ser. A 433, 1–18.

    Google Scholar 

  • Rau P. (1933) The jungle bees and wasps of Barro Colorado Island (with notes on other insects), Privately printed, Kirkwood, Mo, pp. 1–324.

  • Sabrosky C.W. (1962) Mating in Xylocopa virginica (Hymenoptera: Apidae), Proc. Entomol. Soc. Wash. 64, 184.

    Google Scholar 

  • Sage R.D. (1968) Observations on feeding, nesting and territorial behaviour of carpenter bees genus Xylocopa in Costa Rica, Ann. Entomol. Soc. Am. 61, 884–889.

    Google Scholar 

  • Scholz E. (1988) Artenspektrum, Verbreitung, Bionomie und Paarungsbiologie von Holzbienen (Apoidea: Xylocopinae) in Río Grande do Sul, Südbrasilien. Diplomarbeit, Eberhard-Karls-Universität Tübingen.

  • Stark R.E. (1990) Untersuchungen zur Brutbiologie und zum Sozialverhalten der Großen Holzbiene Xylocopa sulcatipes Maa. Dissertation, Albert-Ludwigs-Universität Freiburg.

  • Velthuis H.H.W., Camargo J.M.F. (1975a) Observations on male territories in a carpenter bee Xylocopa (Neoxylocopa) hirsutissima Maidl (Hymenoptera: Anthophoridae), Z. Tierpsychol. 38, 409–418.

    Article  Google Scholar 

  • Velthuis H.H.W., Camargo J.M.F. (1975b) Further observations on the function of male territories in the carpenter bee Xylocopa (Neoxylocopa) hirsutissima Maidl (Anthophoridae, Hymenoptera), Neth. J.Zool. 25, 516–528.

    Article  Google Scholar 

  • Velthuis H.H.W., Gerling D. (1980) Observations on territoriality and mating behaviour of the carpenter bee Xylocopa sulcatipes, Entomol. Exp. Appl. 28, 82–91.

    Article  Google Scholar 

  • Vicidomini S. (1998) Biology of Xylocopa (Xylocopa) violacea (L., 1758) (Hymenoptera: Apidae): Copulatory behavior. Atti Mus. Civ. Orn. Sc. At. Varenna 3, 16–33.

    Google Scholar 

  • Vinson S.B., Frankie G.W. (1990) Territorial and mating behaviour of Xylocopa fimbriata F. and Xylocopa gualanensis Cockerell from Costa Rica, J. Insect Behav. 3, 13–31.

    Article  Google Scholar 

  • Watmough R.H. (1974) Biology and behaviour of carpenter bees in southern Africa, J. Entomol. Soc. S. Afr. 37, 261–281.

    Google Scholar 

  • Williams H.J., Vinson S.B., Frankie G.W. (1987) Chemical content of the dorsal mesosomal gland of two Xylocopa species (Hymenoptera: Anthophoridae) from Costa Rica, Comp. Biochem. Physiol. 86B, 311.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Remko Leys.

Additional information

Manuscript editor: Eduardo A.B. Almeida

Rights and permissions

Reprints and permissions

About this article

Cite this article

Leys, R., Hogendoorn, K. Correlated evolution of mating behaviour and morphology in large carpenter bees (Xylocopa). Apidologie 39, 119–132 (2008). https://doi.org/10.1051/apido:2007044

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1051/apido:2007044

Navigation