Skip to main content

Advertisement

Log in

Entropy production as the selection rule between different growth morphologies

  • Letter
  • Published:

From Nature

View current issue Submit your manuscript

Abstract

CRYSTALLIZATION of a solid phase from a melt or solution is a special case of pattern formation in which the dissipation of energy across the free energy gradient between the two phases can give rise to various growth morphologies in the steady state1. Experimental studies of crystallization from undercooled solutions2, electrolytic deposition3,4 and the formation of fluid patterns in a Hele–Shaw cell5 have revealed faceted, dendritic, 'dense-branching' and fractal morphologies6. For a system with fixed anisotropy and interfacial tension, changes in the driving force for the transition (such as the degree of undercooling) can cause changes in growth morphology which are usually accompanied by changes in growth rate. The selection rule that determines these morphologies remains unclear, although a recent suggestion5,6 is that it is based on the growth velocity. Here I propose that selection is governed by the rate of entropy production per unit area of the different growth patterns. This principle allows accurate prediction of the morphology transition observed for the crystallization of NH4CI (ref. 2). I suggest that it may reflect a more general thermodynamic principle underlying a wide range of natural processes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Nicolis, G. & Prigogine, I. Self-organization in Nonequilibrium Systems (Wiley-Interscience, New York, 1977).

    MATH  Google Scholar 

  2. Chan, S. K., Reimer, H. H. & Kahlweit, M. J. Cryst. Growth 32, 303–315 (1976).

    Article  ADS  CAS  Google Scholar 

  3. Sawada, Y., Dougherty, A. & Gollub, J. P. Phys. Rev. Lett. 56, 1260–1263 (1986).

    Article  ADS  CAS  Google Scholar 

  4. Grier, D., Ben-Jacob, E., Clarke, R. & Sander, L. M. Phys. Rev. Lett. 56, 1264–1267 (1986).

    Article  ADS  CAS  Google Scholar 

  5. Ben-Jacob, E., Garik, P., Mueller, T. & Grier, D. Phys. Rev. A38, 1370–1380 (1988).

    Article  ADS  CAS  Google Scholar 

  6. Ben-Jacob, E. & Garik, P. Nature 343, 523–530 (1990).

    Article  ADS  Google Scholar 

  7. Kahlweit, M. J. Cryst. Growth 6, 125–129 (1970).

    Article  ADS  CAS  Google Scholar 

  8. Widom, M., Deng, D. P. & Henley, C. L. Phys. Rev. Lett. 63, 310–313 (1989).

    Article  ADS  CAS  Google Scholar 

  9. Strandburg, K. J., Tang, L-H. & Jaric, M. V. Phys. Rev. Lett. 63, 314–317 (1989).

    Article  ADS  CAS  Google Scholar 

  10. Maddox, J. Nature 335, 201 (1988).

    Article  ADS  Google Scholar 

  11. Hawthorne, F. C. Nature 345, 297 (1990).

    Article  ADS  Google Scholar 

  12. Glansdorff, P. & Prigogine, I. Thermodynamics of Structure, Stability and Fluctuations (Wiley-Interscience, New York, 1971).

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hill, A. Entropy production as the selection rule between different growth morphologies. Nature 348, 426–428 (1990). https://doi.org/10.1038/348426a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/348426a0

  • Springer Nature Limited

This article is cited by

Navigation