Skip to main content
Log in

Recent Advances in MRI Studies of Chemical Reactors: Ultrafast Imaging of Multiphase Flows

  • Published:
Topics in Catalysis Aims and scope Submit manuscript

Abstract

NMR has long been established as an in situ technique for studying the solid-state structure of catalysts and the chemical processes occurring during catalytic reactions. Increasingly, pulsed field gradient (PFG) NMR and magnetic resonance imaging (MRI) are being exploited in chemical reaction engineering to measure molecular diffusion, dispersion and flow hydrodynamics within reactors. By bringing together NMR spectroscopy, PFG NMR and MRI, we are now able to probe catalysts and catalytic processes from the angstrom-to-centimeter scale. This article briefly reviews current activities in the field of MRI studies applied to catalysts and catalytic reactors. State-of-the-art measurements, which can already be used in real reactor design studies, are illustrated with examples of single-phase flow with and without chemical reaction in a fixed-bed reactor. The ability to obtain high spatial resolution (< 200μm) in images of the internal structure and flow field within reactors is demonstrated, and the potential uses of these data in reactor design and understanding bed fouling phenomena are discussed. In particular, MRI has produced the first detailed measurements of the extent of heterogeneity in the flow field within fixed-bed reactors. The example of a fixed-bed esterification process is used to show how NMR spectroscopy and MRI techniques can be combined to provide spatially resolved information on both hydrodynamics and chemical conversion within a process unit. The emerging area of ultrafast MRI is then highlighted as an area of particular interest. Recent advances have demonstrated that it is possible to record 2D images over timescales of ∼100ms in the magnetically heterogeneous environments typical of heterogeneous chemical reactors. These advances open up opportunities to image many unsteady state processes for the first time. Examples are given of real-time visualization of bubble-train flow in a ceramic monolith and exploring the stability of the gas–liquid distribution as a function of liquid flow rate in a trickle-bed reactor.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. K.Y. Cheah, P. Chiaranussati, M.P. Hollewand and L.F. Gladden, Appl. Catal., A 115 (1994) 147.

    Google Scholar 

  2. J.L. Bonardet, T. Domeniconi, P. N'Gokoli-Kekele, M.A. Spinguel-Huet and J. Fraissard, Langmuir 15 (1999) 5836.

    Google Scholar 

  3. N.K. Bar, F. Bauer, D.M. Ruthven and B. Balcom, J. Catal. 208 (2002) 224.

    Google Scholar 

  4. M.P. Hollewand and L.F. Gladden, Magn. Reson. Imaging 12 (1994) 291.

    PubMed  Google Scholar 

  5. I.V. Koptyug, V.B. Fenelonov, L. Yu. Khitrina, R.Z. Sagdeev and V.N. Parmon, J. Phys. Chem., B 102 (1998) 3090.

    Google Scholar 

  6. I.V. Koptyug, L.Yu. Khitrina, Y.I. Arsitov, M.M. Tokarev, K.T. Iskakov, V.N. Parmon and R.Z. Sagdeev, J. Phys. Chem., B 104 (2000) 1695.

    Google Scholar 

  7. L. Yu. Khitrina, I.V. Koptyug, N.A. Pakhomov, R.Z. Sagdeev and V.N. Parmon, J. Phys. Chem., B 104 (2000) 1966.

    Google Scholar 

  8. I.V. Koptyug, A.V. Kulikov, A.A. Lysova, V.A. Kirillov, V.N. Parmon and R.Z. Sagdeev, J. Am. Chem. Soc. 124 (2002) 9684.

    PubMed  Google Scholar 

  9. M.P. Hollewand and L.F. Gladden, Chem. Eng. Sci. 50 (1995) 309.

    Google Scholar 

  10. M.P. Hollewand and L.F. Gladden, Chem. Eng. Sci. 50 (1995) 327.

    Google Scholar 

  11. L.F. Gladden, P. Alexander and M.P. Hollewand, AIChE J. 41 (1995) 894.

    Google Scholar 

  12. M.P. Hollewand and L.F. Gladden, J. Catal. 144 (1993) 254.

    Google Scholar 

  13. U. Tallerek, K. Albert, E. Bayer and G. Guiochon, AIChE J. 42 (1996) 3041.

    Google Scholar 

  14. U. Tallerek, F.J. Vergeldt and H. Van As, J. Phys. Chem., B 103 (1999) 7654.

    Google Scholar 

  15. U. Tallerek, E. Rapp, H. Van As and E. Bayer, Angew. Chem., Int. Ed. 40 (2001) 1684.

    Google Scholar 

  16. A.K. Heibel, T.W.J. Scheenen, J.J. Heiszwolf, H. Van As, F. Kapteijn and J.A. Moulijn, Chem. Eng. Sci. 56 (2001) 5935.

    Google Scholar 

  17. M.D. Mantle, A.J. Sederman, S. Raymahasay, E.H. Stitt, J.M. Winterbottom and L.F. Gladden, AIChE J. 48 (2002) 909.

    Google Scholar 

  18. I.V. Koptyug, S.A. Altobelli, E. Fukushima, A.V. Matveev and R.Z. Sagdeev, J. Magn. Reson. 147 (2000) 36.

    PubMed  Google Scholar 

  19. A.J. Sederman, M.L. Johns, A.S. Bramley, P. Alexander and L.F. Gladden, Chem. Eng. Sci. 52 (1997) 2239.

    Google Scholar 

  20. A.J. Sederman, M.L. Johns, P. Alexander and L.F. Gladden, Chem. Eng. Sci. 53 (1998) 2117.

    Google Scholar 

  21. B. Manz, P. Alexander and L.F. Gladden, Phys. Fluids 11 (1999) 259.

    Google Scholar 

  22. M.L. Johns, A.J. Sederman, A.S. Bramley, P. Alexander and L.F. Gladden, AIChE J. 46 (2000) 2151.

    Google Scholar 

  23. A.J. Sederman and L.F. Gladden, Chem. Eng. Sci. 56 (2001) 2615.

    Google Scholar 

  24. E.H.L. Yuen, A.J. Sederman and L.F. Gladden, Appl. Catal., A 232 (2002) 29.

    Google Scholar 

  25. S. Sundaresan, AIChE J. 46 (2000) 1102.

    Google Scholar 

  26. A.J. Sederman and L.F. Gladden, Magn. Reson. Imaging 19 (2001) 3389.

    Google Scholar 

  27. E.H.L. Yuen, A.J. Sederman, F. Sani, P. Alexander and L.F. Gladden, Chem. Eng. Sci. 58 (2003) 613.

    Google Scholar 

  28. A.A. Maudsley, S.K. Hilal, W.H. Perman and H.E. Simon, J. Magn. Reson. 51 (1983) 147.

    Google Scholar 

  29. R. Kimmich and D. Hoepfel, J. Magn. Reson. 72 (1987) 379.

    Google Scholar 

  30. L.F. Gladden, P. Alexander, M.M. Britton, M.D. Mantle, A.J. Sederman and E.H.L. Yuen, Magn. Reson. Imaging 21 (2003) 213.

    PubMed  Google Scholar 

  31. E.H.L. Yuen, Ph.D. Thesis (University of Cambridge), Cambridge, 2003).

  32. A.J. Sederman, M.D. Mantle and L.F. Gladden, J. Magn. Reson. 161 (2003) 15.

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lynn F. Gladden.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gladden, L.F. Recent Advances in MRI Studies of Chemical Reactors: Ultrafast Imaging of Multiphase Flows. Topics in Catalysis 24, 19–28 (2003). https://doi.org/10.1023/B:TOCA.0000003072.56070.2e

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/B:TOCA.0000003072.56070.2e

Navigation