, Volume 24, Issue 1-4, pp 19-28

Recent Advances in MRI Studies of Chemical Reactors: Ultrafast Imaging of Multiphase Flows

Rent the article at a discount

Rent now

* Final gross prices may vary according to local VAT.

Get Access

Abstract

NMR has long been established as an in situ technique for studying the solid-state structure of catalysts and the chemical processes occurring during catalytic reactions. Increasingly, pulsed field gradient (PFG) NMR and magnetic resonance imaging (MRI) are being exploited in chemical reaction engineering to measure molecular diffusion, dispersion and flow hydrodynamics within reactors. By bringing together NMR spectroscopy, PFG NMR and MRI, we are now able to probe catalysts and catalytic processes from the angstrom-to-centimeter scale. This article briefly reviews current activities in the field of MRI studies applied to catalysts and catalytic reactors. State-of-the-art measurements, which can already be used in real reactor design studies, are illustrated with examples of single-phase flow with and without chemical reaction in a fixed-bed reactor. The ability to obtain high spatial resolution (< 200μm) in images of the internal structure and flow field within reactors is demonstrated, and the potential uses of these data in reactor design and understanding bed fouling phenomena are discussed. In particular, MRI has produced the first detailed measurements of the extent of heterogeneity in the flow field within fixed-bed reactors. The example of a fixed-bed esterification process is used to show how NMR spectroscopy and MRI techniques can be combined to provide spatially resolved information on both hydrodynamics and chemical conversion within a process unit. The emerging area of ultrafast MRI is then highlighted as an area of particular interest. Recent advances have demonstrated that it is possible to record 2D images over timescales of ∼100ms in the magnetically heterogeneous environments typical of heterogeneous chemical reactors. These advances open up opportunities to image many unsteady state processes for the first time. Examples are given of real-time visualization of bubble-train flow in a ceramic monolith and exploring the stability of the gas–liquid distribution as a function of liquid flow rate in a trickle-bed reactor.