Skip to main content
Log in

In Situ Transport of Vinblastine and Selected P-glycoprotein Substrates: Implications for Drug-Drug Interactions at the Mouse Blood-Brain Barrier

  • Published:
Pharmaceutical Research Aims and scope Submit manuscript

Abstract

Purpose. To study the intrinsic parameters of P-glycoprotein (P-gp) transport and drug-drug interactions at the blood-brain barrier (BBB), as few quantitative in vivo data are available. These parameters could be invaluable for comparing models and predicting the in vivo implications of in vitro studies.

Methods. The brains of P-gp-deficient mice mdr1a(-/-) and wild-type mice were perfused in situ using a wide range of colchicine, morphine, and vinblastine concentrations. The difference between the uptake by the wild-type and P-gp-deficient mice gave the P-gp-linked apparent transport at the BBB. Drug-drug interactions were examined using vinblastine and compounds that bind to P-gp sites (verapamil, progesterone, PSC833) other than the vinblastine site to take into account the multispecific drug P-gp recognition.

Results. P-gp limited the brain uptake of morphine and colchicine in a concentration-independent way up to 2 mM. In contrast, vinblastine inhibited its own P-gp transport with an IC50 of ∼56 μM and a Hill coefficient of ∼4. The vinblastine efflux by P-gp was described by a Km at 16 μM and a maximal efflux velocity, Jmax, of ∼8 pmol s−1 g−1 of brain. Similarly, vinblastine brain transport was increased by inhibiting P-gp as shown by the IC50 ranking, which was PSC833 < verapamil < vinblastine < progesterone.

Conclusions. P-gp is responsible for both capacity-limited and -unlimited transport of P-gp substrates at the mouse BBB. In situ perfusion of mdr1a(\-/\-) and wild-type mouse brains could be used to predict drug-drug interactions for P-gp at the mouse BBB.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. H. Sun, H. Dai, N. Shaik, and W. F. Elmquist. Drug efflux transporters in the CNS. Adv. Drug Deliv. Rev. 55:83–105 (2003).

    Google Scholar 

  2. T. Eisenblatter and H. J. Galla. A new multidrug resistance protein at the blood-brain barrier. Biochem. Biophys. Res. Commun. 293:1273–1278 (2002).

    Google Scholar 

  3. S. V. Ambdukar, S. Dey, and C. A. Hrycyna, M. Ramachandra, I. Pastan, and M. M. Gottesman. Biochemical, cellular and pharmacological aspects of the multidrug transporter. Annu. Rev. Pharmacol. Toxicol. 39:361–398 (1999).

    Google Scholar 

  4. A. Seelig. and E. Landwojtowicz. Structure-activity relationship of P-glycoprotein substrates and modifiers. Eur. J. Pharm. Sci. 12:31–40 (2000).

    Google Scholar 

  5. A. H. Schinkel, E. Wagenaar, L. van Deemter, C. A. Mol, and P. Borst. Absence of the mdr1a P-Glycoprotein in mice affects tissue distribution and pharmacokinetics of dexamethasone, digoxin, and cyclosporin A. J. Clin. Invest. 96:1698–1705 (1995).

    Google Scholar 

  6. S. Cisternino. F. Bourasset, Y. Archimbaud, D. Semiond, G. Sanderink, and J. M. Scherrmann. Nonlinear accumulation in the brain of the new taxoid TXD258 following saturation of Pglycoprotein at the blood-brain barrier in mice and rats. Br. J. Pharmacol. 138:1367–1375 (2003).

    Google Scholar 

  7. M. F. Fromm, R. B. Kim, C. M. Stein, G. R. Wilkinson, and D. M. Roden. Inhibition of P-glycoprotein-mediated drug transport: a unifying mechanism to explain the interaction between digoxin and quinidine. Circulation 99:552–557 (1999).

    Google Scholar 

  8. D. K. Yu. The contribution of P-glycoprotein to pharmacokinetic drug-drug interactions. J. Clin. Pharmacol. 39:1203–1211 (1999).

    Google Scholar 

  9. Q. R. Smith. Brain perfusion systems for studies of drug uptake and metabolism in the central nervous system. In R. T. Borchardt, P. L. Smith, G. Wilson, (eds). Models for assessing drug absorption and metabolism,Vol. 8, New York, Plenum Press, pp. 285–307 (1996).

    Google Scholar 

  10. S. Cisternino, C. Rousselle, C. Dagenais, and J. M. Scherrmann. Screening of multidrug-resistance sensitive drugs by in situbrain perfusion in P-glycoprotein-deficient mice. Pharm. Res. 18:183–190 (2001).

    Google Scholar 

  11. M. Garrigos. L. M. Mir, and S. Orlowski. Competitive and noncompetitive inhibition of the multidrug-resistance-associated Pglycoprotein ATPase-further experimental evidence for a multisite model. Eur. J. Biochem. 244:664–673 (1997).

    Google Scholar 

  12. C. Martin, G. Berridge, C. F. Higgins, P. Mistry, P. Charlton, and R. Callaghan. Communication between multiple drug binding sites on P-glycoprotein. Mol. Pharmacol. 58:624–632 (2000).

    Google Scholar 

  13. A. B. Shapiro. K. Fox, P. Lam, and V. Ling. Stimulation of Pglycoprotein-mediated drug transport by prazosin and progesterone. Evidence for a third drug-binding site. Eur. J. Biochem. 259:841–850 (1999).

    Google Scholar 

  14. C. Dagenais. C. Rousselle, G. M. Pollack, and J. M. Scherrmann. Development of an in situmouse brain perfusion model and its application to mdr1a P-glycoprotein deficient mice. J. Cereb. Blood Flow Metab. 20:381–386 (2000).

    Google Scholar 

  15. W. D. Stein. Kinetics of the multidrug transporter (P-glycoprotein) and its reversal. Physiol. Rev. 77:545–590 (1997).

    Google Scholar 

  16. Y. Takasato, S. I. Rapoport, and Q. R. Smith. An in situbrain perfusion technique to study cerebrovascular transport in the rat. Am. J. Physiol. 247:H484–H493 (1984).

    Google Scholar 

  17. S. Cisternino, C. Rousselle, M. Debray, and J. M. Scherrmann. In vivosaturation of the transport of vinblastine and colchicine by Cisternino et al. 1388P-glycoprotein at the rat blood-brain barrier. Pharm. Res. 20: 1607–1611 (2003).

    Google Scholar 

  18. M. Ponec. J. Kempenaar, B. Shroot, and J. C. Caron. Glucocorticoids: binding affinity and lipophilicity. J. Pharm. Sci. 75:973–975 (1986).

    Google Scholar 

  19. G. Klopman, L. M. Shi, and A. Ramu. Quantitative structureactivity relationship of multidrug resistance reversal agents. Mol. Pharmacol. 52:323–334 (1997).

    Google Scholar 

  20. T. Litman, M. Brangi, E. Hudson, P. Fetsch, A. Abati, D. D. Ross, K. Miyake, J. H. Resau, and S. E. Bates. The multidrugresistant phenotype associated with overexpression of the new ABC half-transporter, MXR (ABCG2). J. Cell Sci. 113:2011–2021 (2000).

    Google Scholar 

  21. K. Tunblad, E. N. Jonsson, and M. Hammarlund-Udenaes. Morphine blood-brain barrier transport is influenced by probenecid co-administration. Pharm. Res. 20:618–623 (2003).

    Google Scholar 

  22. J. Van Asperen, O. Van Tellingen, A. H. Schinkel, and J. H. Beijnen. Comparative pharmacokinetics of vinblastine after a 96-hour continuous infusion in wild-type mice and mice lacking mdr1a P-glycoprotein. J. Pharmacol. Exp. Ther. 289:329–333 (1999).

    Google Scholar 

  23. S. Scala and N. Akhmed. U. S. Rao, K. Paull, L. B. Lan, B. Dickstein, J. S. Lee, G. H. Elgemeie, W. D. Stein, and S. E. Bates. P-glycoprotein substrates and antagonists cluster into two distinct groups. Mol. Pharmacol. 51:1024–1033 (1997).

    Google Scholar 

  24. A. Garrigues, N. Loiseau, M. Delaforge, J. Ferte, M. Garrigos, F. Andre, and S. Orlowski. Characterization of two pharmacophores on the multidrug transporter P-glycoprotein. Mol. Pharmacol. 62:1288–1298 (2002).

    Google Scholar 

  25. P. Gros, R. Dhir, J. Croop, and F. A. Talbot. Single amino acid substitution strongly modulates the activity and substrate specificity of the mouse mdr1 and mdr3 drug efflux pumps. Proc. Natl. Acad. Sci. USA 88:7289–7293 (1991).

    Google Scholar 

  26. F. J. Sharom, P. Lu, R. Liu, and X. Yu. Linear and cyclic peptides as substrates and modulators of P-glycoprotein: peptide binding and effects on drug transport and accumulation. Biochem. J. 333: 621–630 (1998).

    Google Scholar 

  27. R. Callaghan and J. R. Riordan. Synthetic and natural opiates interact with P-glycoprotein in multidrug-resistant cells. J. Biol. Chem. 268: 16059–16064 (1993).

    Google Scholar 

  28. S. Ekins, R. B. Kim, B. F. Leake, A. H. Dantzig, E. G. Schuetz, L. B. Lan, K. Yasuda, R. L. Shepard, M. A. Winter, J. D. Schuetz, J. H. Wikel, and S. A. Wrighton. Three-dimensional quantitative structure-activity relationships of inhibitors of P-glycoprotein. Mol. Pharmacol. 61:964–973 (2002).

    Google Scholar 

  29. S. Ekins, R. B. Kim, B. F. Leake, A. H. Dantzig, E. G. Schuetz, L. B. Lan, K. Yasuda, R. L. Shepard, M. A. Winter, J. D. Schuetz, J. H. Wikel, and S. A. Wrighton. Application of threedimensional quantitative structure-activity relationships of Pglycoprotein inhibitors and substrates. Mol. Pharmacol. 61:974–981 (2002).

    Google Scholar 

  30. R. H. Stephens, C. A. O'Neill, A. Warhurst, G. L. Carlson, M. Rowland, and G. Warhurst. Kinetic profiling of P-glycoproteinmediated drug efflux in rat and human intestinal epithelia. J. Pharmacol. Exp. Ther. 296:584–591 (2001).

    Google Scholar 

  31. S. V. Ambudkar, C. O. Cardarelli, I. Pashinsky, and W. D. Stein. Relation between the turnover number for vinblastine transport and for vinblastine-stimulated ATP hydrolysis by human Pglycoprotein. J. Biol. Chem. 272:21160–21166 (1997).

    Google Scholar 

  32. S. Orlowski, L. M. Mir, J. JR Belehradek, and M. Garrigos. Effects of steroids and verapamil on P-glycoprotein ATPase activity: progesterone, desoxycorticosterone, corticosterone and verapamil are mutually non-exclusive modulators. Biochem. J. 317: 515–522 (1996).

    Google Scholar 

  33. E. J. Wang, C. N. Casciano, R. P. Clement, and W. W. Johnson. Cooperativity in the inhibition of P-glycoprotein-mediated daunorubicin transport: evidence for half-of-the-sites reactivity. Arch. Biochem. Biophys. 383:91–98 (2000).

    Google Scholar 

  34. L. B. Lan, S. Ayesh, E. Lyubimov, I. Pashinsky, and W. D. Stein. Kinetic parameters for reversal of the multidrug pump as measured for drug accumulation and cell killing. Cancer Chemother. Pharmacol. 38:181–190 (1996).

    Google Scholar 

  35. M. Arboix, O. G. Paz, T. Colombo, and M. D'Incalci. Multidrug resistance-reversing agents increase vinblastine distribution in normal tissues expressing the P-glycoprotein but do not enhance drug penetration in brain and testis. J. Pharmacol. Exp. Ther. 281:1226–1230 (1997).

    Google Scholar 

  36. E. Lyubimov, L. B. Lan, I. Pashinsky, and W. D. Stein. Effect of modulators of the multidrug resistance pump on the distribution of vinblastine in tissues of the mouse. Anticancer Drugs 7:60–69 (1996).

    Google Scholar 

  37. M. Lemaire, A. Bruelisauer, P. Guntz, and H. Sato. Dosedependent brain penetration of SDZ PSC 833, a novel multidrug resistance-reversing cyclosporin, in rats. Cancer Chemother. Pharmacol. 38:481–486 (1996).

    Google Scholar 

  38. N. Simon, E. Dailly, O. Combes, E. Malaurie, M. Lemaire, J. P. Tillement, and S. Urien. Role of lipoproteins in the plasma binding of SDZ PSC 833, a novel multidrug resistance-reversing cyclosporin. Br. J. Clin. Pharmacol. 45:173–175 (1998).

    Google Scholar 

  39. W. M. Pardridge and E. M. Landaw. Tracer kinetic model of blood-brain barrier transport of plasma protein-bound ligands. Empiric testing of the free hormone hypothesis. J. Clin. Invest. 74:745–752 (1984).

    Google Scholar 

  40. H. Tanaka and K. Mizojiri. Drug-protein binding and blood-brain barrier permeability. J. Pharmacol. Exp. Ther. 288:912–918 (1999).

    Google Scholar 

  41. Y. Adachi, H. Suzuki, and Y. Sugiyama. Comparative studies on in vitromethods for evaluating in vivofunction of MDR1 Pglycoprotein. Pharm. Res. 18:1660–1668 (2001).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Salvatore Cisternino.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cisternino, S., Rousselle, C., Debray, M. et al. In Situ Transport of Vinblastine and Selected P-glycoprotein Substrates: Implications for Drug-Drug Interactions at the Mouse Blood-Brain Barrier. Pharm Res 21, 1382–1389 (2004). https://doi.org/10.1023/B:PHAM.0000036911.49191.da

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/B:PHAM.0000036911.49191.da

Navigation