Skip to main content
Log in

Chronology of Sediment Deposition in Upper Klamath Lake, Oregon

  • Published:
Journal of Paleolimnology Aims and scope Submit manuscript

Abstract

A combination of tephrochronology and 14C, 210Pb, and 137Cs measurements provides a robust chronology for sedimentation in Upper Klamath Lake during the last 45 000 years. Mixing of surficial sediments and possible mobility of the radio-isotopes limit the usefulness of the 137Cs and 210Pb data, but 210Pb profiles provide reasonable average sediment accumulation rates for the last 100–150 years. Radiocarbon ages near the top of the core are somewhat erratic and are too old, probably as a result of detrital organic carbon, which may have become a more common component in recent times as surrounding marshes were drained. Below the tops of the cores, radiocarbon ages in the center of the basin appear to be about 400 years too old, while those on the margin appear to be accurate, based on comparisons with tephra layers of known age.

Taken together, the data can be combined into reasonable age models for each site. Sediments have accumulated at site K1, near the center of the basin, about 2 times faster than at site CM2, on the margin of the lake. The rates are about 0.10 and 0.05 cm/yr, respectively. The chronological data also indicate that accumulation rates were slower during the early to middle Holocene than during the late Holocene, consistent with increasing wetness in the late Holocene.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • Appleby P.G. and Oldfield F. 1978. The calculation of 210Pb dates assuming a constant rate of supply of unsupported 210Pb to the sediment. Catena 5: 1–8.

    Google Scholar 

  • Bacon C.R. 1983. Eruptive history of Mount Mazama and Crater Lake Caldera, Cascade Range, USA. J. Volcan. Geothermal Res. 18: 57–115.

    Google Scholar 

  • Bard E., Arnold M., Hamelin B., Tisnerat-Laborde N. and Cabioch G. 1998. Radiocarbon calibration by means of mass sectrometric 230Th/234U and 14C ages of corals: An updated database including samples from Barbados, Mururoa, and Tahiti. Radiocarbon 40: 1085–1092.

    Google Scholar 

  • Bond C.E., Hazel C.R. and Vincent D. 1968. Relations of nuisance algae to fishes in Upper Klamath Lake. Terminal Report to FWPCA, Dept. of Fisheries and Wildlife, Oregon State University, 119 pp.

  • Bradbury J.P., Colman S.M. and Dean W.E. 2004a. Limnological and climatic environments at Upper Klamath Lake, Oregon during the past 45 000 years. J. Paleolim. 31: 167–188 (this issue).

    Google Scholar 

  • Bradbury J.P., Colman S.M. and Reynolds R.L. 2004b. The history of recent limnological changes and human impact on Upper Klamath Lake, Oregon. J. Paleolim. 31: 151–165 (this issue).

    Google Scholar 

  • Brenner M., Peplow A.J. and Schelske C.L. 1994. Disequilibrium between 226Ra and supported 210Pb in a sediment core from a shallow Florida lake. Limnol. Oceanogr. 39: 1222–1227.

    Google Scholar 

  • Colman S.M., Bradbury J.P. and Rosenbaum J.G. 2004. Paleolimnology and paleoclimate studies in Upper Klamath Lake, Oregon. J. Paleolim. 31: 129–138 (this issue).

    Google Scholar 

  • Eilers J.M., Kann J., Cornett J., Moser K., St. Armand A. and Gubala C.P. (in press). Recent Paleolimnology of Upper Klamath Lake, Oregon. Hydrobiologia.

  • Hallet D.J., Hills L.U. and Clague J.J. 1997. New accelerator mass spectrometer radiocarbon ages for the Mazama tephra layer from Kootenay National Park, British Columbia, Canada. Can. J. Earth Sci. 34: 1202–1209.

    Google Scholar 

  • Kann J. 1997. Ecology and water quality dynamics of a shallow hypereutrophic lake dominated by cyanobacteria (Aphanizomenon flos-aque). PhD dissertation, University of North Carolina, Chapel Hill, North Carolina, 110 pp.

    Google Scholar 

  • Laenen A. and LeTourneau A.P. 1996. Upper Klamath Lake nutrient loading study — Estimate of wind-induced resuspension of bed sediment during periods of low lake elevation. US Geological Survey Open-File Report 95-414, 11 pp.

  • Martin E.A. and Rice C.A. 1981. 210Pb geochronology and trace metal concentrations of sediments from Upper Klamath Lake and Lake Euwana, Oregon. Northwest Sci. 55: 269–289.

    Google Scholar 

  • Oldfield F., Appleby P.G. and Lund J.W.G. 1984. Empirical testing of 210Pb-dating models for lake sediments. In: Haworth E.Y. (ed.), Lake Sediments and Environmental History, Leicester University Press, Leicester, pp. 93–124.

    Google Scholar 

  • Robbins J.A. 1978. Geochemical and geophysical applications of radioactive lead. In: Nriagu J.O. (ed.), Biogeochemistry of Lead in the Environment, Elsevier Scientific Publ., Amsterdam, pp. 285–293.

    Google Scholar 

  • Robbins J.A. and Edgington D.N. 1975. Determination of recent sedimentation rates in Lake Michigan using Pb-210 and Cs-137. Geochim. Cosmochim. Acta 39: 285–304.

    Google Scholar 

  • Rosenbaum J.G. and Reynolds R.L. 2004. Record of Late Pleistocene glaciation and deglaciation in the southern Cascade Range: II. Flux of glacial flour in a sediment core from Upper Klamath Lake. J. Paleolim. 31: 235–252 (this issue).

    Google Scholar 

  • Sanville W.D., Powers C.F. and Gahler A.R. 1974. Sediments and sediment-water nutrient interchange in Upper Klamath Lake, Oregon. US Environmental Protection Agency Report EPA-660/3-74-015, 45 pp.

  • Sarna-Wojcicki A.M., Lajoie K.R., Meyer C.E., Adam D.P. and Reick H.J. 1991. Tephrochronologic correlation of upper Neogene sediments along the Pacific margin, conterminous United States. In: Morrison R.B. (ed.), Quaternary Non-Glacial Geology: Conterminous United States, Geological Society of America, Decade of North American Geology, vol. K-2, Boulder, Colorado, pp. 117–140.

  • Schelske C.L., Brenner M., Peplow A. and Spencer C.N. 1994. Low-background gamma counting: applications for 210Pb dating of sediments. J. Paleolim. 10: 115–128.

    Google Scholar 

  • Stuiver M. and Pollach H.A. 1977. Discussion — Reporting 14C data. Radiocarbon 19: 355–363.

    Google Scholar 

  • Stuiver M., Reimerand P.J. and Braziunas T.F. 1998. High-precision radiocarbon age calibration for terrestrial and marine samples. Radiocarbon 40: 1127–1151.

    Google Scholar 

  • Vogel J.S., Southon J.R., Nelson D.E., Brown T.A., Polach H.A. and Anderson H.H. 1984. Performance of catalytically condensed carbon for use in accelerator mass spectrometry. In: Wolfi W. (ed.), Proceedings of the 3rd International Symposium on Accelerator Mass Spectrometry, Nuclear Instruments and Methods in Physics Research B233, pp. 289–293.

  • Whitlock C. and Bartlein P.J. 1997. Vegetation and climate change in northwest America during the past 125 kyr. Nature 388: 57–61.

    Google Scholar 

  • Wright H.E. 1967. A square-rod piston sampler for lake sediments. J. Sediment. Petrol. 37: 975–976.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Steven M. Colman.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Colman, S.M., Platt Bradbury, J., McGeehin, J.P. et al. Chronology of Sediment Deposition in Upper Klamath Lake, Oregon. Journal of Paleolimnology 31, 139–149 (2004). https://doi.org/10.1023/B:JOPL.0000019234.05899.ea

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/B:JOPL.0000019234.05899.ea

Navigation