Skip to main content
Log in

REVIEW Bioactive metals: preparation and properties

  • Published:
Journal of Materials Science: Materials in Medicine Aims and scope Submit manuscript

Abstract

Some ceramics, such as Bioglass®, sintered hydroxyapatite, and glass-ceramic A-W, spontaneously form a bone-like apatite layer on their surface in the living body, and bond to bone through the apatite layer. These materials are called bioactive ceramics, and are clinically important for use as bone-repairing materials. However, they cannot be used at high-load sites, such as is found in femoral and tibial bones, because their fracture toughness values are not as high as that of human cortical bone. Titanium metal and its alloys have high fracture toughness, and form a sodium titanate layer on its surface when soaked in a 5 M-NaOH solution at 60 °C for 24 h, followed by a heat treatment at 600 °C for 1 h. On moving toward the metal interior, the sodium titanate layer gradually changes into the pure metal within a distance of 1 μm from the surface. The mechanical strength of the titanium metal or a titanium alloy is not adversely affected by these chemical and thermal treatments. The titanium metal and its alloys resulting from the above treatment can release Na+ ions from its surface into a surrounding body fluid via an ion exchange reaction with H3O+ ions, resulting in many Ti–OH groups forming on its surface. These Ti–OH groups initially combine with Ca2+ ions to form amorphous calcium titanate in the body environment, and later the calcium titanate combines with phosphate ions to form amorphous calcium phosphate. The amorphous calcium phosphate eventually transforms into bone-like apatite, and by this process the titanium metals are soon tightly bonded to the surrounding living bone through the bone-like apatite layer. The treated metals have already been subjected to clinical trials for applications in artificial total hip joints. Metallic tantalum has also been found to bond to living bone after it has been subjected to the NaOH and heat treatment to form a sodium tantalate layer on its surface.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. L. L. Hench and Ö. H. Andersson, in “An Introduction to Bioceramics” (World Scientific, Singapore, 1993) p. 41.

    Google Scholar 

  2. R. Z. Legeros and J. P. Legeros, in “An Introduction to Bioceramics” (World Scientific, Singapore, 1993) p. 139.

    Google Scholar 

  3. T. Kokubo, in “An Introduction to Bioceramics” (World Scientific, Singapore, 1993) p. 75.

    Google Scholar 

  4. J. Wilson, A. Yli-Urpo and H. Risto-Pekka, in “An Introduction to Bioceramics” (World Scientific, Singapore, 1993) p. 63.

    Google Scholar 

  5. E. C. Shores and R. E. Holmes, in “An Introduction to Bioceramics” (World Scientific, Singapore, 1993) p. 181.

    Google Scholar 

  6. T. Yamamuro, in “An Introduction to Bioceramics” (World Scientific, Singapore, 1993) p. 89.

    Google Scholar 

  7. W. R. Lacefield, in “An Introduction to Bioceramics” (World Scientific, Singapore, 1993) p. 223.

    Google Scholar 

  8. N. Neo, S. Kotani, T. Nakamura, T. Yamamuro, C. Ohtsuki, T. Kokubo and Y. Bando, J. Biomed. Mater. Res. 26 (1992) 1419.

    Google Scholar 

  9. T. Kokubo, S. Ito, Z. T. Huang, T. Hayashi, S. Sakka, T. Kitsugi and T. Yamamuro, ibid. 24 (1990) 331.

    Google Scholar 

  10. M. Neo, T. Nakamura, C. Ohtsuki, T. Kokubo and T. Yamamuro, ibid. 27 (1993) 999.

    Google Scholar 

  11. T. Kokubo, T. Hayashi, S. Sakka, T. Kitsugi and T. Yamamuro, J. Ceram. Soc. Japan (Yogyo-Kyokai-Shi) 95 (1987) 785.

    Google Scholar 

  12. T. Kokubo, Biomaterials 12 (1991) 155.

    Google Scholar 

  13. W. Neuman and M. Neuman, in “The Chemical Dynamics of Bone Mineral” (University of Chicago Press, IL, 1958) p. 1.

    Google Scholar 

  14. J. Gamble, in “Chemical Anatomy, Physiological and Pathology of Extracellular Fluid” (Harvard University Press, MA, 1967) p. 1.

    Google Scholar 

  15. C. Ohtsuki, T. Kokubo and T. Yamamuro, J. Non-Cryst. Solids 143 (1992) 84.

    Google Scholar 

  16. P. Li, C. Ohtsuki, T. Kokubo, K. Nakanishi, N. Soga, T. Nakamura and T. Yamamuro, J. Am. Ceram. Soc. 75 (1992) 2094.

    Google Scholar 

  17. P. Li, C. Ohtsuki, T. Kokubo, K. Nakanishi, N. Soga, T. Nakamura, T. Yamamuro and K. De Groot, J. Biomed. Mater. Res. 28 (1994) 7.

    Google Scholar 

  18. M. Uchida, H.-M. Kim, T. Kokubo and T. Nakamura, J. Am. Ceram. Soc. 84 (2001) 2041.

    Google Scholar 

  19. T. Miyazaki, H.-M. Kim, T. Kokubo, C. Ohtsuki, H. Kato and T. Nakamura, J. Ceram. Soc. Japan 109 (2001) 929.

    Google Scholar 

  20. T. Miyazaki, H.-M. Kim, T. Kokubo, H. Kato and T. Nakamura, J. Sol-Gel Sci. Tech. 21 (2001) 83.

    Google Scholar 

  21. T. Kokubo, F. Miyaji, H.-M. Kim and T. Nakamura, J. Am. Ceram. Soc. 79 (1996) 1127.

    Google Scholar 

  22. H.-M. Kim, F. Miyaji, T. Kokubo and T. Nakamura, J. Biomed. Mater. Res. 32 (1996) 409.

    Google Scholar 

  23. H.-M. Kim, F. Miyaji, T. Kokubo and T. Nakamura, J. Ceram. Soc. Japan 105 (1997) 111.

    Google Scholar 

  24. H.-M. Kim, F. Miyaji, T. Kokubo and T. Nakamura, J. Mater. Sci.: Mater. Med. 8 (1997) 341.

    Google Scholar 

  25. H.-M. Kim, F. Miyaji, T. Kokubo, S. Nishiguchi and T. Nakamura, J. Biomed. Mater. Res. 45 (1999) 100.

    Google Scholar 

  26. H.-M. Kim, H. Takadama, F. Miyaji, T. Kokubo and T. Nakamura, Kor. J. Ceram. 4 (1998) 336.

    Google Scholar 

  27. H. Takadama, H.-M. Kim, T. Kokubo and T. Nakamura, J. Biomed. Mater. Res. 55 (2001) 185.

    Google Scholar 

  28. H.-M. Kim, Y. Sasaki, J. Suzuki, S. Fujibayashi, T. Kokubo, T. Matsushita and T. Nakamura, in “Bioceramics”, vol. 13 (Trans Tech Pub., Switzerland, 2000) p. 227.

    Google Scholar 

  29. H. Takadama, H.-M. Kim, T. Kokubo and T. Nakamura, J. Biomed. Mater. Res. 57 (2001) 441.

    Google Scholar 

  30. T. Himeno, M. Kawashita, H.-M. Kim, T. Kokubo and T. Nakamura, in “Bioceramics”, vol. 14 (Trans Tech Pub., Switzerland, 2001) p. 641.

    Google Scholar 

  31. H.-M. Kim, H. Takadama, F. Miyaji, T. Kokubo, S. Nishiguchi and T. Nakamura, J. Mater. Sci.: Mater. Med. 11 (2000) 555.

    Google Scholar 

  32. H. Takadama, H.-M. Kim, T. Kokubo and T. Nakamura, Sci. Tech. Adv. Mater. 2 (2001) 389.

    Google Scholar 

  33. H.-M. Kim, H. Takadama, F. Miyaji, T. Kokubo, S. Nishiguchi and T. Nakamura, Biomaterials 21 (2000) 353.

    Google Scholar 

  34. H.-M. Kim, F. Miyaji, T. Kokubo and T. Nakamura, J. Biomed. Mater. Res. 38 (1997) 121.

    Google Scholar 

  35. K. Nishio, M. Neo, H. Akiyama, S. Nishiguchi, H.-M. Kim, T. Kokubo and T. Nakamura, ibid. 52 (2000) 652.

    Google Scholar 

  36. W. Q. Yan, T. Nakamura, M. Kobayashi, H.-M. Kim, F. Miyaji and T. Kokubo, ibid. 37 (1997) 265.

    Google Scholar 

  37. T. Nakamura, S. Nishiguchi, H.-M. Kim, F. Miyaji and T. Kokubo, in “Advances in Science and Technology, vol. 28: Materials in Clinical Applications” (Techna Srl, Faenza, 1999) p. 289.

    Google Scholar 

  38. S. Nishiguchi, T. Nakamura, M. Kobayashi, H.-M. Kim, F. Miyaji and T. Kokubo, Biomaterials 20 (1999) 491.

    Google Scholar 

  39. S. Nishiguchi, H. Kato, H. Fujita, H.-M. Kim, F. Miyaji, T. Kokubo and T. Nakamura, J. Biomed. Mater. Res. 54 (1999) 689.

    Google Scholar 

  40. S. Nishiguchi, H. Kato, H. Fujita, M. Oka, H.-M. Kim, T. Kokubo and T. Nakamura, Biomaterials 22 (2001) 2522.

    Google Scholar 

  41. T. Kokubo, H.-M. Kim, S. Nishiguchi and T. Nakamura, in “Bioceramics”, vol. 13 (Trans Tech Pub., Switzerland, 2000) p. 3.

    Google Scholar 

  42. S. Nishiguchi, S. Fujibayashi, H.-M. Kim, T. Kokubo and T. Nakamura, J. Biomed. Mater. Res. 62A (2003) 26.

    Google Scholar 

  43. H.-M. Kim, T. Kokubo, S. Fujibayashi, S. Nishiguchi and T. Nakamura, J. Biomed. Mater. Res. 52 (2000) 553.

    Google Scholar 

  44. S. Nishiguchi, H. Kato, M. Neo, M. Oka, H.-M. Kim, T. Kokubo and T. Nakamura, ibid. 54 (2001) 198.

    Google Scholar 

  45. T. Miyazaki, H.-M. Kim, F. Miyaji, T. Kokubo and T. Nakamura, ibid. 50 (2000) 35.

    Google Scholar 

  46. T. Miyazaki, H.-M. Kim, F. Miyaji, T. Kokubo and T. Nakamura, J. Mater. Sci.: Mater. Med. 12 (2001) 683.

    Google Scholar 

  47. T. Miyazaki, H.-M. Kim, T. Kokubo, C. Ohtsuki, H. Kato and T. Nakamura, Biomaterials 23 (2002) 827.

    Google Scholar 

  48. H. Kato, T. Nakamura, S. Nishiguchi, Y. Matsusue, M. Kobayashi, T. Miyazaki, H.-M. Kim and T. Kokubo, J. Biomed. Mater. Res. 53 (2000) 28.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to H.-M. Kim.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kokubo, T., Kim, HM., Kawashita, M. et al. REVIEW Bioactive metals: preparation and properties. Journal of Materials Science: Materials in Medicine 15, 99–107 (2004). https://doi.org/10.1023/B:JMSM.0000011809.36275.0c

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/B:JMSM.0000011809.36275.0c

Keywords

Navigation