Skip to main content
Log in

Electrochemical oxidation of several chlorophenols on diamond electrodes: Part II. Influence of waste characteristics and operating conditions

  • Published:
Journal of Applied Electrochemistry Aims and scope Submit manuscript

Abstract

The electrochemical treatment of wastes containing several chlorophenols (4-chlorophenol, 2,4-dichlorophenol and 2,4,6-trichlorophenol) using boron-doped diamond electrodes is described. Both direct and indirect processes are involved in the oxidation of the organics, indirect processes being mediated by oxidising agents (such as hypochlorite or peroxodisulphate) generated on the surface of the anode. The influence of the waste characteristics (initial concentration, pH and supporting media) is reported. The presence of reversible redox reagents, like the sulphate/peroxodisulphate redox couple, plays an important role in determining the global oxidation rate. Hypochlorite formation depends only on the organochlorinated compound and not on the presence of other reversible redox reagents in the waste. Alkaline pH favours the accumulation of carboxylic acid intermediates since, under these conditions, the oxidation rate of such compounds is low. The influence of the operating conditions (temperature and current density) is also discussed. The results show that high temperatures improve the rate of the mediated reactions and that high current density values decrease the efficiency of the direct electrochemical processes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. L. Papouchado, R.W. Sandford, G. Petrie and R.N. Adams, J. Electroanal. Chem. 65 (1975) 275.

    Google Scholar 

  2. H. Sharifian and D.W. Kirk, J. Electrochem. Soc. 133 (1986) 921.

    Google Scholar 

  3. Ch. Comninellis and C. Pulgarin, J. Appl. Electrochem. 21 (1991) 703.

    Google Scholar 

  4. U. Leffrang, K. Ebert, K. Flory, U. Galla and H. Schmieder, Sep. Sci. Technol. 30 (1995) 1883.

    Google Scholar 

  5. J.L. Boudenne and O. Cerclier, Water Res. 33 (1999) 494.

    Google Scholar 

  6. E. Brillas, R.M. Bastida and E. Llosa, J. Electrochem. Soc. 142 (1995) 1733.

    Google Scholar 

  7. A.M. Polcaro and S. Palmas, Ind. Eng. Chem. Res. 36 (1997) 1791.

    Google Scholar 

  8. M.O. Azzam, M. Al-Tarazi and Y. Tahboub, J. Haz. Mater. B75 (2000) 99.

    Google Scholar 

  9. M.A. Rodrigo, P.A. Michaud, I. Duo, M. Panizza, G. Cerisola and Ch. Comninellis, J. Electrochem. Soc. 148 (2001) D60.

    Google Scholar 

  10. M.S. Ureta-Zañartu, P. Bustos, C. Berríos, M.C. Diez, M.L. Mora and C. Gutiérrez, Electrochim. Acta 47 (2002) 2399.

    Google Scholar 

  11. P.A. Michaud, E. Mahé, W. Haenni, A. Perret and Ch. Comninellis, Electrochem. Solid-State Lett. 3 (2000) 77.

    Google Scholar 

  12. P. Cañizares, J. García-Gómez, J. Lobato and M.A. Rodrigo, Ind. Eng. Chem. Res. 42 (2003) 956.

    Google Scholar 

  13. R. Kötz, S. Stucki and B. Carcer, J. Appl. Electrochem. 21 (1991) 14.

    Google Scholar 

  14. M. Gattrell and D.W. Kirk, Can. J. Chem. Eng. 68 (1990) 997.

    Google Scholar 

  15. S. Stucki, R. Kötz, B. Carcer and W. Suter, J. Appl. Electrochem. 21 (1991) 99.

    Google Scholar 

  16. Y.M. Awad and N.A. Abuzaid, Sep. Pur. Technol. 18 (2000) 227.

    Google Scholar 

  17. L. Gherardini, P.A. Michaud, M. Panizza, Ch. Comninellis and N. Vatistas, J. Electrochem. Soc. 148 (2001) D78.

    Google Scholar 

  18. M. Gattrell and D.W. Kirk, J. Electrochem. Soc. 6 (1993) 1534.

    Google Scholar 

  19. R. Cossu, A.M. Polcaro, M.C. Lavagnolo, M. Mascia, S. Palmas and F. Renoldi, Environ. Sci. Technol. 32 (1998) 3570.

    Google Scholar 

  20. N. Belhadj and A. Savall, J. Electrochem. Soc. 145 (1998) 3427.

    Google Scholar 

  21. M. Panizza, P.A. Michaud, G. Cerisola and Ch. Comninellis, J. Electroanal. Chem. 507 (2001) 206.

    Google Scholar 

  22. P. Cañizares, J. García-Gómez, C. Saez and M.A. Rodrigo, J. Appl. Electrochem., In press.

  23. Ch. Comninellis and A. Nerini, J. Appl. Electrochem. 25 (1995) 23.

    Google Scholar 

  24. R.A. Larson and E.J. Weber, 'Reaction Mechanisms in Environmental Organic Chemistry', (CRC Press, Boca Raton 1994) p. 433.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M.A. Rodrigo.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cañizares, P., García-Gómez, J., Sáez, C. et al. Electrochemical oxidation of several chlorophenols on diamond electrodes: Part II. Influence of waste characteristics and operating conditions. Journal of Applied Electrochemistry 34, 87–94 (2004). https://doi.org/10.1023/B:JACH.0000005587.52946.66

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/B:JACH.0000005587.52946.66

Navigation