Skip to main content
Log in

Modeling Electrical Properties of Gold Films at Infrared Frequency Using FDTD Method

  • Published:
International Journal of Infrared and Millimeter Waves Aims and scope Submit manuscript

Abstract

The finite-difference time-domain (FDTD) algorithm is applied to analyze the electrical properties of gold films, whose relative permittivity is described by the Lorentz-Drude model in infrared and optical frequencies. The skin depth and reflectivity are calculated using the frequency-dependent FDTD method. The results are compared to analytical solutions and an excellent agreement is reported.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Morgan M. D., Home W. E., Sundaram V., Wolfe J. C., Pendharkar S. V. and Tiberion R., "Application of optical filters fabricated by masked ion beam lithography", J. Vac. Sci. Technol. B,Nov/Dec 1996, Vol. 14 No. 6, pp. 3903–3906.

    Article  Google Scholar 

  2. Wu T. K., "Infrared filters for high-efficiency thermovoltaic devices", Microwave and Optical Technology Letters,May 1997, Vol. 15 No. 1, pp. 9–12.

    Article  Google Scholar 

  3. Raynolds J. E., Munk B. A., Pryor J. B., and Marhefka R. J., "Ohimc loss in frequency-selective surfaces", Journal of Applied Physics,May 2003, Vol. 93 No. 9, pp. 5346–5358.

    Article  Google Scholar 

  4. Ehreneich H. and Philipp H. R. and Segall B., "Optical properties of aluminum," Phys, Rev. 132, 1963, pp. 1918–1629.

    Google Scholar 

  5. Ehrenreich H. and Philipp H. R., "Optical properties of Ag and Cu," Phys. Rev. 128, 1962, pp. 1622–1629.

    Article  Google Scholar 

  6. Rakic A. D., Djurisic A. B., Elazar J. M., and Majewski M. L., "Optical properties of metallic films for vertical-cavity optoelectronic devices", Applied Optics,August 1998, Vol. 37 No. 22,pp. 5271–5283.

    Google Scholar 

  7. K. S. Yee, "Numerical solution of initial boundary value problems involving Maxwell's equations in isotropic media," IEEE Trans. Antennas and Propagat.,Vol. 17, 1966, pp. 585–589.

    Google Scholar 

  8. Taflove A. Computational Electrodynamics: The Finite Difference Time Domain Method. Norwood, MA: Artech House, 2000.

    Google Scholar 

  9. Luebbers R., Hunsberger F., Kunz K., Standler R., and Scheider M., "A frequency-dependent finite-difference time-domain formulation for dispersive materials", IEEE Tran. Electromag. Compat.,vol.EMC-32, Aug. 1990, pp. 222–227.

    Article  Google Scholar 

  10. Sullivan D. M., "Frequency-dependent FDTD methods using Z transforms', IEEE Trans. Antenna and Propagat.,vol. AP-40, Oct. 1992, pp.1223–1230.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Qiang, R., Chen, R.L. & Chen, J. Modeling Electrical Properties of Gold Films at Infrared Frequency Using FDTD Method. International Journal of Infrared and Millimeter Waves 25, 1263–1270 (2004). https://doi.org/10.1023/B:IJIM.0000042759.67055.7a

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/B:IJIM.0000042759.67055.7a

Navigation