Skip to main content
Log in

Differential Impacts of Copepods and Cladocerans on Lake Seston, and Resulting Effects on Zooplankton Growth

  • Published:
Hydrobiologia Aims and scope Submit manuscript

Abstract

In an enclosure study in Schöhsee, a small mesotrophic lake in Northern Germany, the impact of copepods and daphniids on the seston community was studied. In general, these two guilds differ in their feeding behaviour. Copepods actively select their food, with a preference for larger particles, whereas most cladocerans are unselective filter-feeders. In this study we investigate how the impact of the two different grazers affects zooplankton growth. We combine results obtained in the laboratory with results measured in situ in the enclosures. Copepods and cladocerans were cultured on seston from enclosures that were inhabited by density gradients of copepods or daphniids. We observed that Daphnia grew faster on seston that was pre-handled by copepods than on seston that was pre-handled by daphniids, and that somatic growth decreased with increasing densities of daphniids in the enclosures. In contrast, we observed no differences in development rates for copepods grown on the different media. The population growth rates of Daphnia in the Daphnia treatments were determined in the enclosures. Growth differences in both somatic- and population growth of Daphnia were correlated to food quality aspects of the seston. In the laboratory we found that Daphnia growth was correlated with several fatty acids. The strongest regression was with the concentration of 20:4ω3 (r 2= 0.37). This particular fatty acid also showed the highest correlation with growth after normalisation of the fatty acids to the carbon content of the enclosures (r 2= 0.33). On the other hand, in the enclosure the population growth correlated most to the particulate nitrogen content (r 2= 0.78) and only to the N:C ratio, when normalised to carbon (r 2= 0.51).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Anderson, T. R. & D. W. Pond, 2000. Stoichiometric theory extended to micronutrients: comparison of the roles of essential fatty acids, carbon, and nitrogen in the nutrition of marine copepods. Limnology and Oceanography 45: 1162-1167.

    Google Scholar 

  • Becker, C. & M. Boersma, 2003. Resource quality effects on life histories in Daphnia. Limnology and Oceanography 48: 700-706.

    Google Scholar 

  • Bengtsson, J., 1986. Life histories and interspecific competition between three Daphnia species in rockpools. Journal of Animal Ecology 55: 641-655.

    Google Scholar 

  • Boersma, M., 1995. Competition in natural populations of Daphnia. Oecologia 103: 309-318.

    Google Scholar 

  • Boersma, M., 2000. The nutritional quality of P-limited algae for Daphnia. Limnology and Oceanography 45: 1157-1161.

    Google Scholar 

  • Boersma, M. & C. Kreutzer, 2002. Life at the edge: is food quality really of minor importance at low quantities? Ecology 83: 2552-2561.

    Google Scholar 

  • Boersma, M., C. Schöps & E. Mccauley, 2001. Nutritional quality of seston for the freshwater herbivore Daphnia galeata x hyalina: biochemical versus mineral limitations? Oecologia 129: 342-348.

    Google Scholar 

  • Boersma, M. & C.-P. Stelzer, 2000. Response of a zooplankton community to the addition of unsaturated fatty acids: an enclosure study. Freshwater Biology 45: 179-188.

    Google Scholar 

  • Butler, N. M., C. A. Suttle & W. E. Neill, 1989. Discrimination by freshwater zooplankton between single algal cells differing in nutritional status. Oecologia 78: 368-372.

    Google Scholar 

  • Cowles, T. J., R. J. Olson & S. W. Chisholm, 1988. Food selection by copepods discrimination on the basis food quality. Marine Biology 100: 41-50.

    Google Scholar 

  • Cuddington, K. M. & E. Mccauley, 1994. Food-dependent aggregation and mobility of the water fleas Ceriodaphnia dubia and Daphnia pulex. Canadian Journal of Zoology 72: 1217-1226.

    Google Scholar 

  • DeMott, W. R., 1982. Feeding selectivities and relative Ingestion Rates of Daphnia and Bosmina. Limnology and Oceanography 27: 518-527.

    Google Scholar 

  • DeMott, W. R., 1986. The role of taste in food selection by freshwater zooplankton. Oecologia 69: 334-340.

    Google Scholar 

  • DeMott, W. R. & W. C. Kerfoot, 1982. Competition among cladocerans: nature of the interaction between Bosmina and Daphnia. Ecology 63: 1949-1966.

    Google Scholar 

  • DeMott, W. R. & F. Moxter, 1991. Foraging on cyanobacteria by copepods-responses to chemical defenses and resource abundance. Ecology 72: 1820-1834.

    Google Scholar 

  • Elser, J. J., K. Hayakawa & J. Urabe, 2001. Nutrient limitation reduces food quality for zooplankton: Daphnia response to seston phosphorus enrichment. Ecology 82: 898-903.

    Google Scholar 

  • Flöder, S. & U. Sommer, 1999. Diversity in planktonic communities: an experimental test of the intermediate disturbance hypothesis. Limnology and Oceanography 44: 1114-1119.

    Google Scholar 

  • Gliwicz, Z. M., 1994. Retarded growth of cladoceran zoo-plankton in the presence of a copepod predator. Oecologia 97: 458-461.

    Google Scholar 

  • Gliwicz, Z. M. & G. Umana, 1994. Cladoceran body size and vulnerability to copepod predation. Limnology and Oceanography 39: 419-424.

    Google Scholar 

  • Grassho., K., M. Ehrhardt & K. Kremling, 1983. Methods of Seawater Analysis, 2nd edn. Verlag Chemie.

  • Hessen, D. O., 1990. Niche overlap between herbivorous cladocerans; the role of food quality and habitat homogeneity. Hydrobiologia 190: 61-78.

    Google Scholar 

  • Hessen, D. O. & A. Lyche, 1991. Interspecific and intraspecific variations in zooplankton element composition. Archiv Fur Hydrobiologie 121: 343-353.

    Google Scholar 

  • Huisman, J. & F. J. Weissing, 1999. Biodiversity of plankton by species oscillations and chaos. Nature 402: 407-410.

    Google Scholar 

  • Hutchinson, G. E., 1961. The paradox of the plankton. American Naturalist 95: 137-145.

    Google Scholar 

  • Interlandi, S. J. & S. S. Kilham, 2001. Limiting resources and the regulation of diversity in phytoplankton communities. Ecology 82: 1270-1282.

    Google Scholar 

  • Jensen, K. H., P. Larsson & G. Hogstedt, 2001. Detecting food search in Daphnia in the field. Limnology and Oceanography 46: 1013-1020.

    Google Scholar 

  • Jürgens, K., S. A. Wickham, K. O. Rothhaupt & B. Santer, 1996. Feeding rates of macro-and microzooplankton on heterotrophic nano flagellates. Limnology and Oceanography 41: 1833-1839.

    Google Scholar 

  • Kerfoot, W. C., 1977. Implications of copepod predation. Limnology and Oceanography 22: 316-325.

    Google Scholar 

  • Kerfoot, W. C. & K. L. Kirk, 1991. Degree of taste discrimination among suspension-feeding cladocerans and copepods — Implications for detritivory and herbivory. Limnology and Oceanography 36: 1107-1123.

    Google Scholar 

  • Lampert, W., 1987. Feeding and nutrition in Daphnia. Memorie dell 'Istituto Italiano di Idrobiologia 45: 143-192.

    Google Scholar 

  • Lampert, W. & I. Trubetskova, 1996. Juvenile growth rate as a measure of fitness in Daphnia. Functional Ecology 10: 631-635.

    Google Scholar 

  • Matveev, V. F., 1983. Estimating competition in cladocerans using data on dynamics of clutch size and population density. Internationale Revue der Gesamten Hydrobiologie 68: 785-798.

    Google Scholar 

  • Müller-Navarra, D., 1995. Evidence that a highly unsaturated fatty acid limits Daphnia growth in nature. Archiv Für Hydrobiologie 132: 297-307.

    Google Scholar 

  • Olsen, Y., 1999, Lipids and essential fatty acids in aquatic food webs: what can freshwater ecologists learn from mariculture? In Arts, M. T. & B. C. Wainman (eds), Lipids in Freshwater Ecosystems, Springer-Verlag, New York, Inc: 161-202.

    Google Scholar 

  • Rothhaupt, K. O., 1997. Grazing and nutrient influences of Daphnia and Eudiaptomus on phytoplankton in laboratory microcosms. Journal of Plankton Research 19: 125-139.

    Google Scholar 

  • Saiz, E., A. Calbet, A. Fara & E. Berdalet, 1998. RNA content of copepods as a tool for determining adult growth rates in the field. Limnology and Oceanography 43: 465-470.

    Google Scholar 

  • Santer, B. & F. van den Bosch, 1994. Herbivorous nutrition of Cyclops vicinus — the effect of a pure algal diet on feeding, development, reproduction and life-cycle. Journal of Plankton Research 16: 171-195.

    Google Scholar 

  • Sommer, U., Z. M. Gliwicz, W. Lampert & A. Duncan, 1986. The PEG model of seasonal succession of planktonic events in fresh waters. Archiv Für Hydrobiologie 106: 433-471.

    Google Scholar 

  • Sommer, U., F. Sommer, B. Santer, C. Jamieson, M. Boersma, C. Becker & T. Hansen, 2001. Complementary impact of copepods and cladocerans on phytoplankton. Ecology Letters 4: 545-550.

    Google Scholar 

  • Sommer, U., F. Sommer, B. Santer, E. Zöllner, K. Juörgens, C Jamieson, M. Boersma & K. Gocke, 2003. Daphnia versus copepod impact on summer phytoplankton: functional compensation at both trophic levels. Oecologia, DOI 10. 1007/s00442-003-1214-7.

  • Tilman, D., 1982. Resource competition and community structure. Princeton University Press, Princeton, NJ.

    Google Scholar 

  • Vanni, M. J., 1986. Competition in zooplankton communities: suppression of small species by Daphnia pulex. Limnology and Oceanography 31: 1039-1056.

    Google Scholar 

  • Villar-Argaiz, M. & R. W. Sterner, 2002. Life history bottlenecks in Diaptomus clavipes induced by phosphorus-limited algae. Limnology and Oceanography 47: 1229-1233.

    Google Scholar 

  • von Elert, E., 2002. Determination of limiting polyunsaturated fatty acids in Daphnia galeata using a new method to enrich food algae with single fatty acids. Limnology and Oceanography 47: 1764-1773.

    Google Scholar 

  • von Elert, E. & P. Stamp., 2000. Food quality for Eudiaptomus gracilis: the importance of particular highly unsaturated fatty acids. Freshwater Biology 45: 189-200.

    Google Scholar 

  • Vrede, T., J. Persson & G. Aronsen, 2002. The influence of food quality (P: C ratio)on RNA: DNA ratio and somatic growth rate of Daphnia. Limnology and Oceanography 47: 487-494.

    Google Scholar 

  • Wacker, A. & E. von Elert, 2001. Polyunsaturated fatty acids: evidence for non-substitutable biochemical resources in Daphnia galeata. Ecology 82: 2507-2520.

    Google Scholar 

  • Weers, P. M. M., K. Siewertsen & R. D. Gulati, 1997. Is the fatty acid composition of Daphnia galeata determined by the fatty acid composition of the ingested diet? Freshwater Biology 38: 731-738.

    Google Scholar 

  • Wiltshire, K. H., M. Boersma, A. Möller & H. Buhtz, 2000. Extraction of pigments and fatty acids from the green alga Scenedesmus obliquus (Chlorophyceae). Aquatic Ecology 34: 119-126.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Becker, C., Feuchtmayr, H., Brepohl, D. et al. Differential Impacts of Copepods and Cladocerans on Lake Seston, and Resulting Effects on Zooplankton Growth. Hydrobiologia 526, 197–207 (2004). https://doi.org/10.1023/B:HYDR.0000041603.41913.95

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/B:HYDR.0000041603.41913.95

Navigation