Skip to main content
Log in

Gravitation Without the Equivalence Principle

  • Published:
General Relativity and Gravitation Aims and scope Submit manuscript

Abstract

In the general relativistic description of gravitation, geometry replaces the concept of force. This is possible because of the universal character of free fall, and would break down in its absence. On the other hand, the teleparallel version of general relativity is a gauge theory for the translation group and, as such, describes the gravitational interaction by a force similar to the Lorentz force of electromagnetism, a non-universal interaction. Relying on this analogy it is shown that, although the geometric description of general relativity necessarily requires the existence of the equivalence principle, the teleparallel gauge approach remains a consistent theory for gravitation in its absence.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

REFERENCES

  1. Hehl, F. W., McCrea, J. D., Mielke, E. W., and Ne'emann,Y. (1995). Phys. Rep. 258, 1; Blagojevi?, M. (2002). Gravitation and Gauge Symmetries, IOP Publishing, Bristol, United Kingdom.

    Google Scholar 

  2. Hammond, R. T. (2002). Rep. Prog. Phys. 65, 599.

    Google Scholar 

  3. Hayashi, K. and Shirafuji, T. (1979). Phys. Rev. D 19, 3524.

    Google Scholar 

  4. Obukhov, Y. N. and Pereira, J. G. (2003). Phys. Rev. D 67, 044016.

    Google Scholar 

  5. de Andrade, V. C. and Pereira, J. G. (1997). Phys. Rev. D 56, 4689.

    Google Scholar 

  6. Synge, J. L. (1960). Relativity: The General Theory, Wiley, New York.

    Google Scholar 

  7. Damour, T. (2001). In Comptes Rendus de l'Academie des Sciences (Paris), C. Bordé and P. Touboul (Ed.) (gr-qc/0109063).

  8. Aldrovandi, R. and Pereira, J. G. (1995). An Introduction to Geometrical Physics, World Scientific, Singapore.

    Google Scholar 

  9. de Andrade, V. C., Guillen, L. C. T., and Pereira, J. G. (2000). Phys. Rev. Lett. 84, 4533.

    Google Scholar 

  10. Landau, L. D., and Lifshitz, E. M. (1975). The Classical Theory of Fields, Pergamon, Oxford.

    Google Scholar 

  11. Aldrovandi, R., Barros, P. B., and Pereira, J. G. (2003). Gen. Rel. Grav. 35, 991.

    Google Scholar 

  12. Will, C. M. (2001). Living Rev. Relat. 4, 4; Haugan, M. P., and Lämmerzahl, C. (2001). Lect. Notes Phys. 562, 195.

    Google Scholar 

  13. de Andrade, V. C., Guillen, L. C. T., and Pereira, J. G. (2001). Phys. Rev. D 64, 027502.

    Google Scholar 

  14. Misner, C. W., Thorne, K. S., and Wheeler, J. A. (1973). Gravitation, Freeman, New York.

    Google Scholar 

  15. Lämmerzahl, C. (1996). Gen. Rel. Grav. 28, 1043; Lämmerzahl, C. (1998). Acta Phys. Polon. 29, 1057; Chiao, R. Y. (2003). In Wheeler's 90th Birthday Symposium Proceedings, Cambridge University Press, Cambridge, United Kingdom (gr-qc/0303100).

    Google Scholar 

  16. Fock, V. A. and Iwanenko, D. (1929). Z. Phys. 54, 798.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Aldrovandi, R., Pereira, J.G. & Vu, K.H. Gravitation Without the Equivalence Principle. General Relativity and Gravitation 36, 101–110 (2004). https://doi.org/10.1023/B:GERG.0000006696.98824.4d

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/B:GERG.0000006696.98824.4d

Navigation