Skip to main content
Log in

After the genome—the phenome?

  • Published:
Journal of Inherited Metabolic Disease

Abstract

Summary: What next? The Human Genome Project signifies complexity rather than simplification in the relationship between genotype and phenotype. Genotypes are embedded in genomes. Individuality in phenotypes is embedded in components of the phenome (transcriptome, metabolome, proteome, etc.). The phenome, its layers, and its nodes, links and networks, require elucidation; there is a need for a Human Phenome Project (Freimer and Sabatti 2003). Biology has largely been a reductive science in the recent past; integrative biology lies ahead. Clinician-scientists (including human biochemical geneticists) will be recognized as key participants in the ‘medical’ Phenome Project as it reveals components of individuality, and their contributions, in simple or combinatorial fashion, to Mendelian and complex traits; better ways to treat ‘genetic disease’ will be by-products of the project.

Although the Word is common to all, most men live as if each had a private wisdom of his own.

Herakleitos

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

REFERENCES

  • Avise JC (2001) Evolving genomic metaphors: a new look at the language of DNA. Science 294: 86–87.

    Article  PubMed  CAS  Google Scholar 

  • Badano JL, Katsanis N (2002) Beyond Mendel: an evolving view of human genetic disease transmission. Nat Rev Genet 3: 779–789.

    Article  PubMed  CAS  Google Scholar 

  • Bearn AG (ed.) (1993) Archibald Garrod and the Individuality of Man. Oxford: Clarendon Press.

    Google Scholar 

  • Bell JI (2003) The double helix in clinical practice. Nature 421: 414–416.

    Article  PubMed  CAS  Google Scholar 

  • Bray D (2003) Molecular prodigality. Science 299: 1189–1190.

    Article  PubMed  CAS  Google Scholar 

  • Caspi A, Sugden K, Moffitt TE, et al (2003) Influence of life stress on depression: Moderation by a polymorphism in the 5-HTT gene. Science 301: 386–389.

    Article  PubMed  CAS  Google Scholar 

  • Cavalli-Sforza LL, Menozzi P, Piazza A (1993) Demic expansions and human evolution. Science 259: 639–646.

    PubMed  CAS  Google Scholar 

  • Chakravarti A, Little P (2003) Nature, nurture and human disease. Nature 421: 412–414.

    Article  PubMed  CAS  Google Scholar 

  • Chesney RW, Friedman A, Kanto WP Jr, Stanton BF, Stull TL (2002) Pediatric practice and education in the genomic/postgenomic era. J Pediatr 141: 453–458.

    Article  PubMed  Google Scholar 

  • Cheung VG, Conlin LK, Weber TM, et al (2003) Natural variation in human gene expression assessed in lymphoblastoid cells. Nature Genetics 33: 422–425.

    Article  PubMed  CAS  Google Scholar 

  • Childs B (1999) Genetic Medicine. A Logic of Disease. Baltimore, MD: The Johns Hopkins University Press.

    Google Scholar 

  • Collins FS, Green ED, Guttmacher AE, Guyer MS, USNHGRI (2003) A vision for the future of genomics research. Nature 422: 835–847.

    Article  PubMed  CAS  Google Scholar 

  • Cowles CR, Hirshorn JN, Altshuler D, Lander ES (2002) Detection of regulatory variation in mouse genes. Nature Genetics 32: 432–437.

    Article  PubMed  CAS  Google Scholar 

  • Dennis C and Campbell P (2003) The eternal molecule. Nature 421: 396.

    Article  CAS  Google Scholar 

  • Dobzhansky T (1973) Nothing in biology makes sense except in the light of evolution. Am Biol Teacher 35: 125–129.

    Google Scholar 

  • Evans WE, Relling MV (1999) Pharmacogenomics: translating functional genomics into rational therapeutics. Science 286: 487–491.

    Article  PubMed  CAS  Google Scholar 

  • Freimer N, Sabatti C (2003) The Human Phenome Project. Nature Genetics 34: 15–21.

    Article  PubMed  CAS  Google Scholar 

  • Gavin A-C, Bosche M, Krause R, et al (2002) Functional organization of the yeast proteome by systematic analysis of protein complexes. Nature 415: 141–147.

    Article  PubMed  CAS  Google Scholar 

  • Glazier AM, Nadeau JH, Altman TJ (2002) Finding genes that underlie complex traits. Science 298: 2345–2349.

    Article  PubMed  CAS  Google Scholar 

  • Goldstein JL, Brown MS (1997) The clinical investigator: bewitched, bothered and bewildered-but still beloved. J Clin Invest 99: 2803–2812.

    PubMed  CAS  Google Scholar 

  • Hall JG (2003) A clinician's plea. Nature Genetics 33: 440–442.

    Article  PubMed  CAS  Google Scholar 

  • Hariharan IK, Haber DA (2003) Yeast, flies, worms, and fish in the study of human disease. N Engl J Med 348: 2457–2463.

    Article  PubMed  Google Scholar 

  • Harris H, Hopkinson DA, Edwards YH (1977) Polymorphism and the subunit structure of enzymes: a contribution to the neutralist selectionist controversy. Proc Natl Acad Sci USA 74: 697–701.

    Google Scholar 

  • Hartman JL, Garvik B, Hartwell L (2001) Principles for the buffering of genetic variation. Science 291 (Feb. 9): 1001–1004.

    Article  PubMed  CAS  Google Scholar 

  • Ho Y, Gruhler A, Heilbut A, et al (2002) Systematic identification of protein complexes in Saccharomyces cerevisiae by mass spectrometry. Nature 415: 180–183.

    Article  PubMed  CAS  Google Scholar 

  • Hudson TJ (2003) Wanted: regulatory SNPs. Nature Genetics 33: 439–440.

    Article  PubMed  CAS  Google Scholar 

  • Ideker T, Thorsson V, Ranish JA, et al (2001) Integrated genomic and proteomic analyses of a systematically perturbed metabolic network. Science 292: 929–934.

    Article  PubMed  CAS  Google Scholar 

  • International Human Genome Sequencing Consortium (2001) Initial sequencing and analysis of the human genome. Nature 409: 860–921.

    Article  Google Scholar 

  • Jacob F (1977) Evolution and tinkering. Science 196: 1161–1166.

    PubMed  CAS  Google Scholar 

  • Jeong H, Tombor B, Albert R, Otlval ZN, Barabasi AL (2000) The large-scale organization of metabolic networks. Nature 407 (Oct. 5): 651–654.

    Article  PubMed  CAS  Google Scholar 

  • Jimenez-Sanchez G, Childs B, Valle D (2001) Human disease genes. Nature 409: 853–855.

    Article  PubMed  CAS  Google Scholar 

  • Kacser H, Porteous JW (1987) Control of metabolism: What do we have to measure? Trends Biochem Sci 12: 5–14.

    Article  CAS  Google Scholar 

  • Kauffman SA (1993) The Origins of Order. New York: Oxford University Press.

    Google Scholar 

  • Kumar A, Snyder M (2002) Protein complexes take the bait. Nature 415: 123–124.

    Article  PubMed  CAS  Google Scholar 

  • Lau NC, Bartel DP (2003) Censors of the genome. Sci Am August: 34–41.

  • Legrain P, Wojcik J, Gauthier J-M (2001) Protein-protein interaction maps: a lead towards cellular functions. Trends Genet 17: 346–352.

    Article  PubMed  CAS  Google Scholar 

  • Maddox B (2003) The double helix and the 'wronged heroine'. Nature 421: 407–408.

    Article  PubMed  CAS  Google Scholar 

  • Maurer SM, Firestone RB, Scriver CR (2000) Science's neglected legacy. Nature 405: 117–120.

    Article  PubMed  CAS  Google Scholar 

  • McManus MT, Sharp PA (2002) Gene silencing in mammals by small interfering RNAs. Nat Rev Genet 3: 737–747.

    Article  PubMed  CAS  Google Scholar 

  • Muntau AC, Roschinger W, Habich M et al (2002) Tetrahydrobiopterin as an alternative treatment for mild phenylketonuria. N Engl J Med 347: 2122–2132.

    Article  PubMed  CAS  Google Scholar 

  • Nadeau JH (2001) Modifier genes in mice and humans. Nature Genetics 2: 165–174.

    CAS  Google Scholar 

  • Oltvai ZN, Barabasi AL (2002) Life's complexity pyramid. Science 298: 763–764.

    Article  PubMed  CAS  Google Scholar 

  • Ouzounis CA, Coulson RMR, Enright AJ, Kunin V, Pereira-Leal JB (2003) Classification schemes for protein structure and function. Nat Rev Genet 4: 508–519.

    Article  PubMed  CAS  Google Scholar 

  • Prigogine I (1980) From Being to Becoming. Time and Complexity in the Physical Sciences. New York: WH Freeman.

    Google Scholar 

  • Rees J (2002) Complex disease and the new clinical sciences. Science 296: 698–701.

    Article  PubMed  CAS  Google Scholar 

  • Rose S (2001) The biology of the future and the future of biology. Perspect Biol Med 44(Autumn): 473–484.

    PubMed  CAS  Google Scholar 

  • Rosenberg LE (1999) The physician-scientist: an essential-and fragile-link in the medical research chain. J Clin Invest 103: 1621–1626.

    Article  PubMed  CAS  Google Scholar 

  • Scriver CR (1993) Genetics and society: what society expects of geneticists-overview. Trans R Soc Canada IV: 3–10.

    Google Scholar 

  • Scriver CR (2001) Garrod's foresight; our hindsight. J Inherit Metab Dis 24: 93–116.

    Article  PubMed  CAS  Google Scholar 

  • Scriver CR (2002a) Does hereditary metabolic disease modulate senescence and ageing? J Inherit Metab Dis 25: 235–251.

    Article  PubMed  CAS  Google Scholar 

  • Scriver CR (2002b) Why mutation analysis does not always predict clinical consequences: explanations in the era of genomics. J Pediatr 140: 502–506.

    Article  PubMed  Google Scholar 

  • Scriver CR (2003) Tinkered masterpieces or master tinker. American Society for Human Genetics. http://www.faseb.org/ashg/educ/evo-00.shtml (website).

  • Scriver CR, Gregory DM, Sovetts D, Tissenbaum G (1985) Normal plasma free amino acid values in adults: the influence of some common physiological variables. Metabolism 34: 868–873.

    Article  PubMed  CAS  Google Scholar 

  • Scriver CR, Nowacki PM (1999) Genomics, mutations and the internet: the naming and use of parts. J Inherit Metab Dis 22: 519–530.

    Article  PubMed  CAS  Google Scholar 

  • Sober E (1984) The Nature of Selection. Evolutionary Theory in Philosophical Focus. Cambridge, MA: MIT Press.

    Google Scholar 

  • Strohman R (2003) ThermodynamicsDold laws in medicine and complex diseases. Nature Biotechnology 21: 477–479.

    Article  PubMed  CAS  Google Scholar 

  • Tong AHY, Evangelista M, Parsons AB, et al (2001) Systematic genetic analysis with ordered arrays of yeast deletion mutants. Science: 2364–2368.

  • Venter JC, Adams MD, Myers EW, et al (2001) The sequence of the human genome. Science 291(Feb. 16): 1304–1351.

    Article  PubMed  CAS  Google Scholar 

  • Waters PJ Parniak MA, Akerman BR, et al (1999) Missense mutations in the phenylalanine hydroxylase gene (PAH) can cause accelerated proteolytic turnover of PAH enzyme: a mechanism underlying phenylketonuria. J Inherit Metab Dis 22: 208–212.

    Article  PubMed  CAS  Google Scholar 

  • Watson JD, Crick FHC (1953) Molecular structure of nucleic acids: a structure for deoxyribose nucleic acid. Nature 171: 737–738.

    Article  PubMed  CAS  Google Scholar 

  • Weiss KM, Buchanan AV (2003) Evolution by phenotype: a biomedical perspective. Perspect Biol Med 46(2): 159–182.

    PubMed  Google Scholar 

  • Willett WC (2002) Balancing life-style and genomics research for disease prevention. Science 296: 695–698.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Scriver, C.R. After the genome—the phenome?. J Inherit Metab Dis 27, 305–317 (2004). https://doi.org/10.1023/B:BOLI.0000031100.26546.6e

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/B:BOLI.0000031100.26546.6e

Keywords

Navigation