Skip to main content
Log in

Biodegradation of poly(l-lactide)

  • Published:
Biotechnology Letters Aims and scope Submit manuscript

Abstract

The biodegradation of poly(l-lactide) (PLA) is reviewed. The important role of actinomycetes in PLA degradation is emphasized. These PLA-degrading actinomycetes belong phylogenetically to the Pseudonocardiaceae family and related genera, including Amycolatopsis, Lentzea, Streptoalloteichus, Kibdelosporangium and Saccharothrix. A PLA-degrading enzyme purified from an isolated Amycolatopsis strain-41 has substrate specificity on PLA higher than proteinase K. The application of these strains and their enzymes can be effectively used for biological treatment of plastic wastes containing PLA.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

References

  • Cai H, Dave V, Gross RA, McCarthy SP (1996) Effects of physical aging, crystallinity, and orientation on the enzymatic degradation of poly(lactic acid). J. Polym. Sci. Part B: Polym. Phys. 34: 2701–2708.

    Google Scholar 

  • Calabia BP, Tokiwa Y (2004) Microbial degradation of poly(D-3-hydroxybutyrate) by a new thermophilic Streptomyces isolate. Biotechnol. Lett. 26: 15–19.

    Google Scholar 

  • Carothers WH (1929) Studies on polymerization and ring formation. I. An introduction to the general theory of condensation polymers. J. Am. Chem. Soc. 51: 2548–2559.

    Google Scholar 

  • Chiba T, Nakai T (1985) A synthetic approach to (+)-thienamycin from methyl (R)-3-hydroxybutanoate: a new entry to (3R, 4R)-3-[(R)-1-hydroxyethyl]-4-acetoxy-2-azetidinone. Chem. Lett. 1985: 651–654.

    Google Scholar 

  • Fan Y, Nishida H, Hoshihara S, Shirai Y, Tokiwa Y, Endo T (2003) Pyrolysis kinetics of poly(L-lactide) with carboxyl and calcium salt end structures. Polym. Degrad. Stab. 79: 547–562.

    Google Scholar 

  • Ikura Y, Kudo T (1999) Isolation of a microorganism capable of degrading poly(L-lactide). J. Gen. Appl. Microbiol. 45: 247–251.

    Google Scholar 

  • Iwata T, Doi Y (1998) Morphology and enzymatic degradation of poly(L-lactic acid) single crystals. Macromolecules 31: 2461–2467.

    Google Scholar 

  • Jarerat A, Tokiwa Y (2001) Degradation of poly(L-lactide) by a fungus. Macromol. Biosci. 1: 136–140.

    Google Scholar 

  • Jarerat A, Tokiwa Y (2003) Degradation of poly(L-lactide) by Saccharothrix waywayandensis. Biotechnol. Lett. 25: 401–404.

    Google Scholar 

  • Jarerat A, Pranamuda H, Tokiwa Y (2002) Poly(L-lactide)-degrading activity in various actinomycetes. Macromol. Biosci. 2: 420–428.

    Google Scholar 

  • Jarerat A, Tokiwa Y, Tanaka H (2003) Poly(L-lactide) degradation by Kibdelosporangium aridum. Biotechnol. Lett. 25: 2035–2038.

    Google Scholar 

  • Leenslag JW, Gogolewski S, Pennings AJ (1984) Resorbable materials of poly(L-lactide). V. Influence of secondary structure on the mechanical properties and hydrolyzability of poly(L-lactide) fibers produced by a dry-spinning method. J. Appl. Polym. Sci. 29: 2829–2842.

    Google Scholar 

  • Leenslag JW, Pennings AJ, Bos RRM, Rozema FR, Boering G (1987) Resorbable materials of poly(L-lactide). VII. In vivo and in vitro degradation. Biomaterials 8: 311–314.

    Google Scholar 

  • McDonald RT, McCarthy S, Gross RA (1996) Enzymatic degradability of poly(lactide): effects of chain stereochemistry and material crystallinity. Macromolecules 29: 7356–7361.

    Google Scholar 

  • Moon SI, Urayama H, Kimura Y (2003) Structural characterization and degradability of poly(L-lactic acid)s incorporating phenylsubstituted alpha-hydroxy acids as comonomers. Macromol. Biosci. 3: 301–309.

    Google Scholar 

  • Murphy CA, Cameron JA, Huang SJ, Vinopal RT (1996) Fusarium polycaprolactone depolymerase is cutinase. Appl. Environ. Microbiol. 62: 456–460.

    Google Scholar 

  • Nakamura K, Tomita T, Abe N, Kamio Y (2001) Purification and characterization of an extracellular poly(L-lactic acid) depolymerase from a soil isolate, Amycolatopsis sp. strain K104-1. Appl. Environ. Microbiol. 67:345–353.

    Google Scholar 

  • Nakayama A, Kawasaki N, Aiba S, Maeda Y, Arvanitoyannis I, Yamamoto N (1998) Synthesis and biodegradability of novel copolyesters containing γ-butyrolactone units. Polymer 39: 1213–1222.

    Google Scholar 

  • Nakayama A, Kawasaki N, Maeda Y, Arvanitoyannis I, Aiba S, Yamamoto N (1997) Study of biodegradability of poly(δ-valerolactone-co-L-lactide)s. J. Appl. Polym. Sci. 66: 741–748.

    Google Scholar 

  • Nishida H, Tokiwa Y (1993) Distribution of poly (δ-hydroxybutyrate) and poly(δ-caprolactone) aerobic degrading microorganisms in different environments. J. Environ. Polym. Degrad. 1: 227–233.

    Google Scholar 

  • Nishida H, Tokiwa Y (1994) Degradation of poly (2-oxepanone) by phytopathogens. Chem. Lett. 1994: 1547–1550.

  • Nishida H, Tokiwa Y (2000) Microbial degradation of poly (p-dioxanone). I. Isolation of degrading microorganisms and microbial decomposition in pure culture. Polym. Degrad. Stab. 68: 205–217.

    Google Scholar 

  • Oda Y, Yonetsu A, Urakami T, Tonomura K (2000) Degradation of polylactide by commercial proteases. J. Polym. Environ. 8: 29–32.

    Google Scholar 

  • Pranamuda H, Tokiwa Y (1999) Degradation of poly(L-lactide) by strains belonging to genus Amycolatopsis. Biotechnol. Lett. 21: 901–905.

    Google Scholar 

  • Pranamuda H, Chollakup R, Tokiwa Y (1999) Degradation of polycarbonate by a polyester-degrading strain, Amycolatopsis strain HT-6. Appl. Environ. Microbiol. 65: 4220–4222.

    Google Scholar 

  • Pranamuda H, Tokiwa Y, Tanaka H (1995) Microbial degradation of an aliphatic polyester with a high melting point, poly(tetramethylene succinate). Appl. Environ. Microbiol. 61: 1828–1832.

    Google Scholar 

  • Pranamuda H, Tokiwa Y, Tanaka H (1997) Polylactide degradation by an Amycolatopsis sp. Appl. Environ. Microbiol. 63: 1637–1640.

    Google Scholar 

  • Pranamuda H, Tsuchii A, Tokiwa Y (2001) Poly(L-lactide)-degrading enzyme produced by Amycolatopsis sp. Macromol. Biosci. 1: 25–29.

    Google Scholar 

  • ReeveMS, McCarthy SP, Downey MJ, Gross RA (1994) Polylactide stereochemistry: effect on enzymatic degradability. Macromolecules 27: 825–831.

    Google Scholar 

  • Sakai K, Kawano H, Iwami A, Nakamura M, Moriguchi M (2001) Isolation of a thermophilic poly-L-lactide degrading bacterium from compost and its enzymatic characterization. J. Biosci. Bioeng. 92: 298–300.

    Google Scholar 

  • Strydom DJ, Haylett T, Stead RH (1977) The amino-terminal acid sequence of silk fibroin peptide Cp-a reinvestigation. Biochem. Biophys. Res. Commun. 79: 932–938.

    Google Scholar 

  • Tansengco ML, Tokiwa Y (1998) Thermophilic microbial degradation of polyethylene succinate. World J. Microbiol. Biotechnol. 14: 133–138.

    Google Scholar 

  • Tomita K, Kuroki Y, Nakai K (1999) Isolation of thermophiles degrading poly(L-lactic acid). J. Biosci. Bioeng. 87: 752–755.

    Google Scholar 

  • Tokiwa Y, Jarerat A (2003) Microbial degradation of aliphatic polyesters. Macromol. Symp. 201: 283–289.

    Google Scholar 

  • Tokiwa Y, Suzuki T (1974) Degradation of polyethylene glycol adipate by a fungus. J. Ferment. Technol. 52: 393–398.

    Google Scholar 

  • Tokiwa Y, Suzuki T (1977a) Purification and some properties of polyethylene adipate-degrading enzyme produced by Penicillium sp. strain 14-3. Agric. Biol. Chem. 41: 265–274.

    Google Scholar 

  • Tokiwa Y, Suzuki T (1977b) Hydrolysis of polyesters by lipases. Nature 270: 76–78.

    Google Scholar 

  • Tokiwa Y, Suzuki T (1981) Hydrolysis of copolyesters containing aromatic and aliphatic ester blocks by lipase. J. Appl. Polym. Sci. 26: 441–448.

    Google Scholar 

  • Tokiwa Y, Konno M, Nishida H (1999) Isolation of silk degrading microorganisms and its poly(L-lactide) degradability. Chem. Lett. 1999: 355–356.

    Google Scholar 

  • Tokiwa Y, Pranamuda H, Jarerat A, Nishida H (2000) Ninth Annual Meeting of the BioEnvironmental Polymer Society, Hawaii, p. 33.

  • Tokiwa Y, Suzuki T, Takeda K (1988) Two types of lipases in hydrolysis of polyester. Agric. Biol. Chem. 52: 1937–1943.

    Google Scholar 

  • Tsuji H, Ishizaka T (2001) Preparation of porous poly(δ-caprolactone) films from blends by selective enzymatic removal of poly(L-lactide). Macromol. Biosci. 1: 59–65.

    Google Scholar 

  • Tsuji H, Miyauchi S (2001) Poly(L-lactide). VI. Effects of crystallinity on enzymatic hydrolysis of poly(L-lactide) without free amorphous region. Polym. Degrad. Stab. 71: 415–424.

    Google Scholar 

  • Tsuji H, Nakahara K (2002) Poly(L-lactide). IX. Hydrolysis in acid media. J. Appl. Polym. Sci. 86: 186–194.

    Google Scholar 

  • Vainionpaa S, Rokkanen P, Tormall P (1989) Surgical application of biodegradable polymers in human-tissues. Prog. Polym. Sci. 14: 679–716.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tokiwa, Y., Jarerat, A. Biodegradation of poly(l-lactide). Biotechnology Letters 26, 771–777 (2004). https://doi.org/10.1023/B:BILE.0000025927.31028.e3

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/B:BILE.0000025927.31028.e3

Navigation