Skip to main content
Log in

Mars Crustal Magnetism

  • Published:
Space Science Reviews Aims and scope Submit manuscript

Abstract

Mars lacks a detectable magnetic field of global scale, but boasts a rich spectrum of magnetic fields at smaller spatial scales attributed to the spatial variation of remanent magnetism in the crust. On average the Mars crust is 10 times more intensely magnetized than that of the Earth. It appears likely that the Mars crust acquired its remanence in the first few hundred million years of evolution when an active dynamo sustained an intense global field. An early dynamo era, ending in the Noachian, or earliest period of Mars chronology, would likely be driven by thermal convection in an early, hot, fluid core. If crustal remanence was acquired later in Mars history, a dynamo driven by chemical convection associated with the solidification of an inner core is likely. Thermal evolution models cannot yet distinguish between these two possibilities. The magnetic record contains a wealth of information on the thermal evolution of Mars and the Mars dynamo, but we have just begun to decipher its message.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Acuña, M. H. et al.: 1992, ‘Mars Observer Magnetic Fields Investigation’, J. Geophys. Res. 97, 7799-7814.

    ADS  Google Scholar 

  • Acuña, M. H. et al.: 1998, ‘Magnetic Field and Plasma Observations at Mars: Initial Results of the Mars Global Surveyor Mission’, Science 279, 1676-1680.

    ADS  Google Scholar 

  • Acuña, M. H. et al.: 1999, ‘Global Distribution of Crustal Magnetism Discovered by the Mars Global Surveyor MAG/ER Experiment’, Science 284, 790-793.

    ADS  Google Scholar 

  • Acuña, M. H. et al.: 2001, ‘The magnetic Field of Mars: Summary of Results from the Aerobraking and Mapping Orbits’, J. Geophys. Res. 106, 23403-23417.

    Article  ADS  Google Scholar 

  • Albee, A. L., Palluconi, F. D. and Arvidson, R. E.: 1998, ‘Mars Global Surveyor Mission: Overview and Status’, Science 279, 1671-1672.

    Article  ADS  Google Scholar 

  • Albee, A. L., Arvidson, R. E., Palluconi, F. D. and Thorpe, T.: 2001, ‘Overview of the Mars Global Surveyor Mission’, J. Geophys. Res. 106, 23291-23316.

    ADS  Google Scholar 

  • Arkani-Hamed, J.: 2001a, ‘A 50-degree Spherical Harmonic Model of the Magnetic Field of Mars’, J. Geophys. Res. 106(E10), 23197-23208.

    Article  ADS  Google Scholar 

  • Arkani-Hamed, J.: 2001b, ‘Paleomagnetic Pole Positions and Pole Reversals on Mars’, Geophys. Res. Lett. 28(17), 3409-3412.

    Article  ADS  Google Scholar 

  • Arkani-Hamed, J.: 2002a, ‘An Improved 50-degree Spherical Harmonic Model of the Magnetic Field of Mars Derived from Both High-altitude and Low-altitude Data’, J. Geophys. Res. 107(E5).

  • Arkani-Hamed, J.: 2002b, ‘Magnetization of the Mars Crust’, J. Geophys. Res. 107(E10).

  • Bertka, C. M. and Fei, Y.: 1997, ‘Mineralogy of the Martian Interior Up to Core-mantle Boundary Pressures’, J. Geophys. Res. 102, 5251-5264.

    Article  ADS  Google Scholar 

  • Blakely, R. J.: 1995, Potential Theory in Gravity and Magnetic Applications, Cambridge University Press, Cambridge, 437 pp.

    Google Scholar 

  • Breuer, D. and Spohn, T.: 1993, ‘Cooling of the Earth, Urey Ratios, and the Problem of Potassium in the Core’, Geophys. Res. Lett. 20, 1655-1658.

    ADS  Google Scholar 

  • Breuer, D., Yuen, D. A. and Spohn, T.: 1997, ‘Phase Transitions in the Martian Mantle: Implications for Partially Layered Convection’, Earth Planetary Sci. Lett. 148, 457-469.

    Article  ADS  Google Scholar 

  • Breuer, D. and Spohn. T.: 2003, ‘Early Plate Tectonics vs. Single Plate Tectonics on Mars: Evidence from Magnetic Field History and Crust Evolution’, J. Geophys. Res. submitted.

  • Braginsky, S. I,: 1964, ‘Magnetohydrodynamics of the Earth's Core’, Geomag. Aeron. 4, 698-712.

    Google Scholar 

  • Buffett, B. A., Huppert, H. E., Lister, J. R. and Woods, A. W.: 1996, ‘On the Thermal Evolution of the Earth's Core’, J. Geophys. Res. 101, 7989-8006.

    Article  ADS  Google Scholar 

  • Cain, J. C., Ferguson, B. and Mozzoni, D.: 2002, ‘An n = 90 Internal Potential Function of the Magnetic Field of the Martian Crustal Magnetic Field’, J. Geophys. Res. 107(E10).

  • Chabot, N. L. and Drake, M. J.: 1999, ‘Potassium Solubility in Metal: The Effects of Composition at 15 kbar and 1900 deg C on Partitioning Between Iron Alloys and Silicate Melts’, Earth Planetary Sci. Lett. 172, 323-335.

    Article  ADS  Google Scholar 

  • Chen, J. H. and Wasserburg, G. J.: 1986, Formation Ages and Evolution of Shergotty and its Parent Planet from U-Th-Pb Systematics', Geochim. Cosmochim. Acta 50, 955-968.

    ADS  Google Scholar 

  • Christensen, P. R. et al.: 2000, ‘Detection of Crystalline Hematite Mineralization on Mars by the Thermal Emission Spectrometer: Evidence for Near-surface Water’, J. Geophys. Res. 105, 9623-9642.

    ADS  Google Scholar 

  • Cisowski, S.M.: 1986, ‘Magnetic Studies on Shergotty and Other SNC Meteorites’, Geochimica and Cosmochimica Acta. 50, 1043-1048.

    ADS  Google Scholar 

  • Connerney, J. E. P.: 1993, ‘Magnetic Fields of the Outer Planets’, J. Geophys. Res. 98(E10), 18,659-18679.

    ADS  Google Scholar 

  • Connerney, J. E. P. et al.: 1999, ‘Magnetic Lineations in the Ancient Crust of Mars’, Science 284, 794-798.

    Article  ADS  Google Scholar 

  • Connerney, J. E. P. et al.: 2001, ‘The Global Magnetic Field of Mars and Implications for Crustal Evolution’, Geophys. Res. Lett. 28, 4015-4018.

    Article  ADS  Google Scholar 

  • Davaille, A. and Jaupart, C.: 1993, ‘Transient High-Rayleigh-number Thermal Convection with Large Viscosity Variations’, J. Fluid Mech. 253, 141-166.

    ADS  Google Scholar 

  • Dolginov, Sh. Sh. and Zhuzgov, L. N.: 1991, ‘The Magnetic Field and Magnetosphere of the Planet Mars’, Planetary Space Sci. 39, 1493-1510.

    Article  ADS  Google Scholar 

  • Ernst, R. E., Grosfils, E.B. and Mege, D.: 2001, ‘Giant Dike Swarms: Earth, Venus, and Mars’, Ann. Rev. Earth Planetary Sci. 29, 489-534.

    ADS  Google Scholar 

  • Fairen, A. G., Ruiz, J. and Anguita, F.: 2002, ‘An Origin for the Linear Magnetic Anomalies on Mars Through Accretion of Terranes: Implications for Dynamo Timing’, Icarus 160, 220-223.

    ADS  Google Scholar 

  • Frey, H. and Schultz, R. A.: 1988, ‘Large Impact Basins and the Mega-impact Origin for the Crustal Dichotomy on Mars’, Geophys. Res. Lett. 15, 229-232.

    ADS  Google Scholar 

  • Frey, H. V., Roark, J. H., Shockey, K. M., Frey, E. L. and Sakimoto, S. E. H.: 2002, ‘Ancient Lowlands on Mars’, Geophys. Res. Lett. 29.

  • Gessmann, C. K. and Wood, B. J.: 2002, ‘Potassium in the Earth's Core?’, Earth Planetary Sci. Lett. 200, 63-78.

    Article  ADS  Google Scholar 

  • Glatzmeier, G. A. and Roberts, P. H. ‘Simulating the Geodynamo’, Contemp. Phys. 38, 269-288.

  • Goettel, K. A.: 1981, ‘Density of the Mantle of Mars’, Geophys. Res. Lett. 8, 497-500.

    ADS  Google Scholar 

  • Goldstein, M. L.: 1975, ‘Lunar Magnetism’, Nature 258, 175.

    Article  ADS  Google Scholar 

  • Grasset, O. and Parmentier, E. M.: 1998, ‘Thermal Convection in a Volumetrically Heated, Infinite Prandtl Number Fluid With Strongly Temperature-Dependent Viscosity: Implications for Planetary Thermal Evolution’, J. Geophys. Res. 103, 18171-18181.

    Article  ADS  Google Scholar 

  • Gringauz, K. I., Verigin, M., Luhmann, J., Russell, C. T. and Mihalov, J. D.: 1993, ‘On the Compressibility of the Magnetic Tails of Mars and Venus’, in Plasma Environments of Non-magnetic Planets, Pergammon, New York, pp. 265-270.

    Google Scholar 

  • Hauck, S. A. and Phillips, R. J.: 2002, ‘Thermal and Crustal Evolution of Mars’, J. Geophys. Res. 107.

  • Head, J. W., Kreslavsky, M. A. and Pratt, S.: 2002, ‘Northern Lowlands of Mars: Evidence for Widespread Volcanic Flooding and Tectonic Deformation in the Hesperian Period’, J. Geophys. Res. 107.

  • Hood, L. L. and Zakharian, A.: 2001, ‘Mapping and Modeling of Magnetic Anomalies in the Northern Polar Region of Mars’, J. Geophys. Res. 106(E7), 14601-14619.

    Article  ADS  Google Scholar 

  • Jault, D.: 1996, ‘Magnetic Field Generation Impeded by Inner Cores of Planets’, Cr. Acad. Sci. II A 323, 451-458.

    Google Scholar 

  • Kellog, O. D.: 1929, Foundations of Potential Theory, Frederick Ungar Publishers, New York.

    Google Scholar 

  • Kleine, T., Münker, C., Metzger and Palme, H.: 2002, ‘Rapid Accretion and Core Formation on Asteroids and the Terrestrial Planets from Hf-W Chronometry’, Nature 418, 952-955.

    Article  ADS  Google Scholar 

  • Kletetschka, G., Wasilewski, P. J. and Taylor, P. T.: 2000, ‘Hematite vs. Magnetite as the Signature for Planetary Magnetic Anomalies?’, Earth Planetary Sci. Lett. 176, 469-479.

    Article  ADS  Google Scholar 

  • Langel, R. A.: 1987, in J. A. Jacobs (ed.), ‘The Main Field’, Geomagnetism Academic Press, London, pp. 249-512.

    Google Scholar 

  • Langel, R. A., Schnetzler, C. C., Phillips, J. D. and Horner, R. J.: 1982, ‘Initial Vector Magnetic Anomaly Map from MAGSAT’, Geophys. Res. Lett. 9, 273-276.

    ADS  Google Scholar 

  • Langel, R. A. and Estes, H.: 1982, ‘A Geomagnetic Field Spectrum’, Geophys. Res. Lett. 9, 250-253.

    ADS  Google Scholar 

  • Lee, D. C. and Halliday, A. N.: 1997, ‘Core Formation on Mars and Differentiated Asteroids’, Nature 388, 854-857.

    Article  ADS  Google Scholar 

  • Leweling, M. and Spohn, T.: 1997, ‘Mars: a Magnetic Field Due to Thermoremanence?’, Planetary Space Sci. 45, 1389-1400.

    Article  ADS  Google Scholar 

  • Longhi, J., Knittle, E., Holloway, J. R. and Wanke, H.: 1992, in Kieffer, Hugh H., Jakosky, Bruce, M., Snyder, Conway W., Matthews, Mildred S., (Eds), ‘The Bulk Composition, Mineralogy, and Internal Structure of Mars’, Mars, University of Arizona Press, Tucson, AZ, pp. 184-208.

    Google Scholar 

  • Maus, S., Rother, M., Holme, R., Luhr, H., Olsen, N. and Haak, V.: 2002, ‘First Scalar Magnetic Anomaly Map from CHAMP Satellite Data Indicates Weak Lithospheric Field’, Geophys. Res. Lett. 29(14).

  • Maus, S. and Haak, V.: 2002, ‘Is the Long Wavelength Crustal Magnetic Field Dominated by Induced or Remanent Magnetization?’, Geophys. Res. Lett. in press.

  • Mayhew, M. A. and Galliher, S. C.: 1982, ‘An Equivalent Source Magnetization Model for the United States Derived from MAGSAT Data’, Geophys. Res. Lett. 9, 311-313.

    ADS  Google Scholar 

  • McSween, H. Y., Jr. et al.: 2001, ‘Geochemical Evidence Magmatic Water Within Mars from Pyroxenes in the Shergotty Meteorite’, Nature, 409, 487-490.

    Article  ADS  Google Scholar 

  • Mitchell, D. L. et al.: 2001, ‘Probing Mars' Crustal Magnetic Field and Ionosphere with the MGS Electron Reflectometer’, J. Geophys. Res. 106(E10), 23419-23427.

    Article  ADS  Google Scholar 

  • Mohlmann, D. et al.: 1991, ‘The Question of an Internal Martian Magnetic Field’, Planetary Space Sci. 39, 83.

    ADS  Google Scholar 

  • Ness, N. F.: 1979, ‘The Magnetic Fields of Mercury, Mars and Moon’, Ann. Rev. Earth Planetary Sci. 7, 248-288.

    ADS  Google Scholar 

  • Nimmo, F.: 2000, ‘Dike Intrusion as a Possible Cause of Linear Martian Magnetic Anomalies’, Geology 28, 391-394.

    Article  Google Scholar 

  • Nimmo, F. and Stevenson, D.: 2000, ‘Influence of Early Plate Tectonics on the Thermal Evolution and Magnetic Field of Mars’, J. Geophys. Res. 105, 11969-11979.

    Article  ADS  Google Scholar 

  • Ochadlick, A. R., Jr.: 1991, ‘Magnetic Exploration of Ocean Crust for Craters of Impact Origin’, Geophysics 56(6), 1153-1157.

    Google Scholar 

  • Olsen, N.: 2002, ‘A Model of the Geomagnetic Field and its Secular Variation for Epoch 2000’, Geophys. J. Int. 149, 454-462.

    Article  ADS  Google Scholar 

  • Parker, R. L.: 2003, ‘Ideal Bodies for Mars Magnetics’, J. Geophys. Res. 108(E1).

  • Purucker, M. et al.: 2000, ‘An Altitude-normalized Magnetic Map of Mars and Its Interpretation’, Geophys. Res. Lett. 27, 2449-2452.

    ADS  Google Scholar 

  • Riedler, W. et al.: 1989, ‘Magnetic Fields Near Mars: First Results’, Nature 341, 604-607.

    Article  ADS  Google Scholar 

  • Roberts, P. H. and Glatzmeier, F. A.: 2000, ‘Geodynamo Theory and Ssimulation’, Rev. Modern Physics 72, 1081-1123.

    Article  ADS  Google Scholar 

  • Runcorn, S. K.: 1975, ‘An Ancient Lunar Magnetic Dipole Field’, Nature 253, 701-703.

    Article  ADS  Google Scholar 

  • Runcorn, S. K.: 1975, ‘On the Interpretation of Lunar Magnetism’, Phys. Earth planetary Int. 10, 327-335.

    ADS  Google Scholar 

  • Russell, C. T.: 1978a, ‘The Magnetc Field of Mars: Mars 3 Evidence Re-examined’, Geophys. Res. Lett. 5, 81-84.

    ADS  Google Scholar 

  • Russell, C. T.: 1978b, ‘The Magnetic Field of Mars: Mars 5 Evidence Re-examined’, Geophys. Res. Lett. 5, 85-88.

    ADS  Google Scholar 

  • Russell, C. T.: 1979, in C. F. Kennel (ed.), ‘The Interaction of the Solar Wind With Mars, Venus and Mercury’, Solar System Plasma Physics, North-Holland, Amsterdam, pp. 208-252.

    Google Scholar 

  • Russell, C. T. et al.: 1995, ‘A Simple Test of the Induced Nature of the Martian Tail’, Planetary Space Sci. 43(7), 875-879.

    Article  ADS  Google Scholar 

  • Schubert, G. and Spohn. T.: 1990, ‘Thermal History of Mars and the Sulfur Content of Its Core’, J. Geophys. Res. 95, 14095-14104.

    ADS  Google Scholar 

  • Schubert, G, Solomon, S. C., Turcotte, D. L., Drake, M. J. and Sleep,: 1992, in Kieffer, Hugh, H., Jakosky, Bruce M., Snyder, Conway, W., Matthews, Mildred S. (ed.), ‘Origin and Thermal Evolution of Mars’, Mars University of Arizona Press, Tucson, AZ, pp. 147-183.

    Google Scholar 

  • Schubert, G., Russell, C. T. and Moore, W. B.: 2000, ‘Geophysics-Timing of the Martian dynamo’, Nature 408, 666-667.

    Article  ADS  Google Scholar 

  • Senshu, H., Kuramoto, K. and Matsui, T.: 2002, ‘Thermal Evolution of a Growing Mars’, J. Geophys. Res. 107(E12), 5118.

    Article  Google Scholar 

  • Slavin, J. A., Schwingenschuh, K., Riedler, W. and Yeroshenko, Y.: 1991, ‘The Solar Wind Interaction With Mars: Mariner 4, Mars 2, Mars 3, Mars 5, and Phobos 2 Observations of Bow Shock Position and Shape’, J. Geophys. Res. 96, 11235-11241.

    ADS  Google Scholar 

  • Slavin, J. A. and Holzer, R. E.: 1994, ‘The Solar Wind Interaction With Mars Revisited’, J. Geophys. Res. 87, 10285-10296.

    ADS  Google Scholar 

  • Sleep, N. H.: 1994, ‘Martian Plate Tectonics’, J. Geophys. Res. 99, 5639-5655.

    ADS  Google Scholar 

  • Smith, D. E. et al.: 1999, ‘The Global Topography of Mars and Implications for Surface Evolution’, Science 284, 1495-1503.

    ADS  Google Scholar 

  • Smith, D. E., Zuber, M. T. and Neumann, G. A.: 2001, ‘Seasonal Variations of Snow Depth on Mars’, Science 294(5549), 2141-2146.

    ADS  Google Scholar 

  • Smith, E. J., Davis, L. Jr., Coleman, P. J. and Jones, D. E.: 1965, ‘Magnetic Field Measurements Near Mars’, Science 149, 1241-1242.

    ADS  Google Scholar 

  • Sohl, F. and Spohn, T.: 1997, ‘The Structure of Mars: Implications from SNC-Meteorites’, J. Geophys. Res. 102, 1613-1635.

    Article  ADS  Google Scholar 

  • Solomatov, V. S.: 1995, ‘Scaling of Temperature-and Stress-Dependent Viscosity’, Phys. Fluids 7, 266-274.

    Article  ADS  MATH  Google Scholar 

  • Spohn, T.: 1991, ‘Mantle Differentiation and Thermal Evolution of Mars, Mercury, and Venus’. Icarus 90(2), 222-236.

    Article  ADS  MathSciNet  Google Scholar 

  • Spohn T., Acuña, M. A., Breuer, D., Golombek, M., Greeley, R., Halliday, A., Hauber, E., Jaumann, R. and Sohl, F.: 2001, ‘Geophysical Constraints on the Evolution of Mars’, Space Sci. Rev. 96, 231-262.

    Article  ADS  Google Scholar 

  • Spohn, T., Sohl, F. and Breuer, D.: 1998, ‘Mars’, Astron. Astrophys. Rev. 8, 181-235.

    ADS  Google Scholar 

  • Sprenke, K. F. and Baker, L. L.: 2000, ‘Magnetization, Paleomagnetic Poles, and Polar Wander on Mars’, Icarus 147, 26-34.

    Article  ADS  Google Scholar 

  • Stevenson, D. J., Spohn, T. and Schubert, G.: 1983, ‘Magnetism and Thermal Evolution of the Terrestrial Planets’, Icarus 54, 466-489.

    Article  ADS  Google Scholar 

  • Stevenson, D. J.: 1990, in Newsom, H. E., Jones, J. H. (eds), ‘Fluid dynamics of core formation’. Origin of the Earth Oxford University Press, New York, pp. 231-249.

    Google Scholar 

  • Stevenson, D. J.: 2001, ‘Mars Core and Magnetism’, Nature 412, 214-219.

    Article  ADS  Google Scholar 

  • Stevenson, D. J.: 2000, ‘Core Superheat’, EOS Trans. AGU 81(48).

  • Telford, W. M., Geldart, L. P., Sheriff, R. E. and Keys, D. A.: 1976, Applied Geophysics, Cambridge University Press, Cambridge.

    Google Scholar 

  • Verigin, M. I. et al.: 1991, ‘Ions of Planetary Origin in Martian Magnetosphere’, Planetary Space Sci. 39(1–2), 131-137.

    ADS  Google Scholar 

  • Voorhies, C. V., Sabaka, T. J. and Purucker, M.: 2002, ‘On Magnetic Spectra of Earth and Mars’, J. Geophys. Res. 107(E6).

  • Wadhwa, M.: 2000, ‘Redox State of Mars' Upper Mantle and Crust From Eu Anomalies in Shergottite Pyroxenes’, Science 291, 1527-1530.

    ADS  Google Scholar 

  • Wihelms, D. E. and Squyres, S. W.: 1984, ‘The Martian Hemispheric Dichotomy May be Due to a Giant Impact’, Nature 309, 138-140.

    ADS  Google Scholar 

  • Williams, Q. and Jeanloz, R.: 1990, ‘Melting Relations in the Iron Sulfur System at Ultra-high Pressures: Implications For the Thermal State of the Earth’, J. Geophys. Res. 95, 19299-19310.

    ADS  Google Scholar 

  • Wise, D. U., Golombeck, M. P. and McGill, G. E.: 1979, ‘Tectonic Evolution on Mars’, J. Geophys. Res. 84, 7934-7939.

    ADS  Google Scholar 

  • Zindler, A. and Hart, S.: 1986, ‘Chemical Geodynamics’, Ann. Rev. Earth Planetary Sci. 14, 493-571.

    ADS  Google Scholar 

  • Yoder, C. F., Konopliv, A. S., Yuan, D. N., Standish, E. M. and Folkner, W. M.: 2003, ‘Fluid Core Size of Mars from Detection of the Fluid Tide’, Science.

  • Zuber, M. T.: 2001, ‘The Crust and Mantle of Mars’, Nature 412, 220-227.

    Article  ADS  Google Scholar 

  • Zuber, M. T., Solomon, S. C., Phillips, R. J., Smith, D. E., Tyler, G. L., Aharonson, O., Balmino, G., Banerdt, W. B., Head, J.W., Lemoine, F. G., McGovern, P. J., Neumann, G. A., Rowlands, D. D. and Zhong, S.: 2000, ‘Internal Structure and Early Thermal Evolution of Mars from Mars Global Surveyor Topography and Gravity’, Science 287, 1788-1793.

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Connerney, J., Acuña, M., Ness, N. et al. Mars Crustal Magnetism. Space Science Reviews 111, 1–32 (2004). https://doi.org/10.1023/B:SPAC.0000032719.40094.1d

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/B:SPAC.0000032719.40094.1d

Keywords

Navigation