, Volume 51, Issue 3, pp 353-360

Lipid Fatty Acid Composition and Thermophilicity of Cyanobacteria

Rent the article at a discount

Rent now

* Final gross prices may vary according to local VAT.

Get Access


An analysis of lipid fatty acid composition in several unicellular and filamentous forms of mesophilic and thermophilic cyanobacteria was performed. At 47°C (the temperature of thermophilic cyanobacteria maintenance in the collection), the unicellular thermophilic Synechococcus strains were devoid of polyenoic acids as distinct from the mesophilic forms of this genus at the temperature of 20°C (the temperature of this cyanobacterial maintenance in the collection). In the thermophilic Synechococcus elongatusIPPAS B-267 strain, a decrease in temperature did not result in the occurrence of C18 polyenoic acids, but the quantitative relationship between the saturated and unsaturated fatty acids (S/U ratio) was decreased twofold. In contrast, the culturing of mesophilic strains at 25–32°C resulted in an increase in the S/U ratio due to an increase in the proportion of the 16:0 acid. In the Synechococcus IPPAS B-434 strain, this treatment resulted in a decrease in the relative content of monoenoic, mainly hexadecenoic, acids. The cyanobacterium Gloeobacter violaceus, which lacks thylakoids, and whose photosystems are formed in a cell membrane, contained polyenoic acids. The filamentous thermophilic cyanobacterium Phormidium laminosum, at the maintenance temperature of 47°C, did contain polyenoic acids, but their proportion was considerably lower than that in the filamentous mesophilic forms, such as Tolypothrix sp. and Spirulina platensis. A relative content of hexadecenoic acids in Ph. laminosum was higher than in the mesophilic forms. A possible role of hexadecenoic acids in the processes of adaptation of cyanobacteria to high temperatures is discussed. A relationship between the characteristics of fatty acid composition fixed by evolution and the changes caused by adaptation to a particular environment is considered.