Skip to main content
Log in

Peroxidase and the biosynthesis of terpenoid indole alkaloids in the medicinal plant Catharanthus roseus (L.) G. Don

  • Published:
Phytochemistry Reviews Aims and scope Submit manuscript

Abstract

The leaves of Catharanthus roseus (L.) G. Don produce the first natural drugs used in cancer therapy – the dimeric terpenoid indole alkaloids vinblastine and vincristine. The study of C. roseus further revealed two other terpenoid indole alkaloids with important pharmacological activity: ajmalicine, used as an antihypertensive, and serpentine, used as sedative. The biosynthetic pathway of the medicinal alkaloids has been investigated in much detail and a number of steps are now well characterized at the enzyme and gene level and, recently, several regulatory genes have also been isolated and characterized. Since early studies of the biosynthesis of vinblastine, during the 1970s and 1980s, the dimerization reaction has attracted much attention due to its possible regulatory importance and potential application for the semi synthetic production of the dimeric alkaloids. After initial, inconclusive work suggesting the involvement of peroxidase-like enzymes, the search for the dimerization enzyme in leaf tissue detected a single dimerization activity credited to the single class III plant peroxidase present in the leaves of the plant – the basic isoenzyme CRPRX1. The enzyme was purified to homogeneity, the respective cDNA and genomic sequences were characterized, and a channeling mechanism was proposed for the peroxidase-mediated-vacuolar synthesis of the first dimeric alkaloid intermediate, α-3′,4′-anhydrovinblastine. On the other hand, the oxidation of ajmalicine into serpentine has been attributed to basic peroxidase isoenzymes localized in the vacuole of C. roseus cells. An overview of the work implying class III plant peroxidases in the biosynthesis of terpenoid indole alkaloids in C. roseus is presented here.

Abbreviations: CRPRX1 –Catharanthus roseus peroxidase 1; DAB – diaminobenzidine; IEF – isoelectric focusing; UV – ultraviolet.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Allan AC & Fluhr R (1997) Two Distinct Sources of Elicited Reactive Oxygen Species in Tobacco Epidermal Cells. Plant Cell 9: 1559–1572.

    Google Scholar 

  • Balsevich J & Bishop G (1989) Distribution of catharanthine, vindoline and 3,4-anhydrovinblastine in the aerial parts of some Catharanthus roseus plants and the significance thereof in relation to alkaloid production in cultured cells. In: Kurz WGW (ed) Primary and secondary metabolism of plant cell cultures (pp 149–153). Springer-Verlag, Berlin.

    Google Scholar 

  • Baxter RL, Dorschel CA, Lee SL & Scott AI (1979) Biosynthesis of the antitumour Catharanthus alkaloids. Conversion of anhydrovinblastine into vinblastine. J. Chem. Soc. Chem. Commun. 257–259.

  • Baxter RL, Hasan M, Mackenzie NE & Scott AI (1982) Biosynthesis of the antitumour Catharanthus alkaloids: The fate of the 21 a-hydrogen of anhydrovinblastine. J. Chem. Soc. Chem. Commun. 791–793.

  • Bethke PC & Jones RL (1997) Reversible protein phosphorylation regulates the activity of the slow-vacuolar ion channel. Plant J. 11: 1227–1235.

    Google Scholar 

  • Blom TJM, Sierra M, van Vliet TB, Franke-van Dijk MEI, Koning P, van Iren F, Verpoorte R & Libbenga KR (1991) Uptake and accumulation of ajmalicine into isolated vacuoles of cultured cells of Catharanthus roseus (L.) G. Don. and its conversion into serpentine. Planta 183: 170–177.

    Google Scholar 

  • Bowler C, Van Camp W, Van Montagu M & Inzé D (1994) Superoxide dismutase in plants. Crit. Rev. Plant Sci. 13: 199–218.

    Google Scholar 

  • Burbulis IE & Winkel-Shirley B (1999) Interactions among enzymes of the Arabidopsis flavonoid biosynthetic pathway. Proc. Natl. Acad. Sci. USA 96: 12929–12934.

    Google Scholar 

  • Chappell J (1995) Biochemistry and Molecular Biology of the isoprenoid biosynthetic pathway in plants. Annu. Rev. Plant Physiol. Plant Mol. Biol. 46: 521–547.

    Google Scholar 

  • Debnam PM, Shearer G, Blackwood L & Kohl DH (1997) Evidence for channeling of intermediates in the oxidative pentose phosphate pathway by soybean and pea nodule extracts, yeast extracts, and purified yeast enzymes. Eur. J. Biochem. 246: 283–290.

    Google Scholar 

  • Desikan R, Hancock JT, Coffey MJ & Neill SJ (1996) Generation of active oxygen in elicited cells of Arabidopsis thaliana is mediated by a NADPH oxidase-like enzyme. FEBS Lett. 382: 213–217.

    Google Scholar 

  • Deus-Neumann B & Zenk MH (1984) A highly selective alkaloid uptake system in vacuoles of higher plants. Planta 162: 250–260.

    Google Scholar 

  • Duflos A, Kruczynski A & Barret JM (2002) Novel aspects of natural and modified vinca alkaloids. Curr. Med. Chem. Anti-Canc. Agents 2: 55–70.

    Google Scholar 

  • Duroux L & Welinder KG (2003) The peroxidase gene family in plants: A phylogenetic overview. J. Mol. Evol. 57: 397–407.

    Google Scholar 

  • Endo T, Goodbody A, Vukovic J & Misawa M (1988) Enzymes from Catharanthus roseus cell suspension cultures that couple vindoline and catharanthine to form 3,4-anhydrovinblastine. Phytochemistry 27: 2147–2149.

    Google Scholar 

  • Facchini PJ (2001) Alkaloid biosynthesis in plants: Biochemistry, cell biology, molecular regulation and metabolic engineering applications. Annu. Rev. Plant Physiol. Plant Mol. Biol. 52: 29–66.

    Google Scholar 

  • Ferrer MA, Calderón AA, Muñoz R & Ros Barceló A (1990) 4-Methoxy-á-naftol as a specific substrate for kinetic, zymographic and cytochemical studies on plant peroxidase activities. Phytochem. Anal. 1: 63–69.

    Google Scholar 

  • Foreman J, Demidchik V, Bothwell JH, Mylona P, Miedema H, Torres MA, Linstead P, Costa S, Brownlee C, Jones JD, Davies JM & Dolan L (2003) Reactive oxygen species produced by NADPH oxidase regulate plant cell growth. Nature 422: 442–446.

    Google Scholar 

  • Gantet P & Memelink J (2002) Transcription factors: Tools to engineer the production of pharmacologically active plant metabolites. Trends Pharmacol. Sci. 23: 563–569.

    Google Scholar 

  • Gijzen M, Van Hyustee R & Buzzell RL (1993) Soybean seed coat peroxidase. A comparison of high-activity and low-activity genotypes. Plant Physiol. 103: 1061–1066.

    Google Scholar 

  • Gomez Tena M, Pedreño MA, Ros Barcelo A & Ferrer MA (1994) Subcellular localization of a basic peroxidase isoenzyme in crisphead lettuce. J. Am. Soc. Hort. Sci. 119: 1276–1278.

    Google Scholar 

  • Goodbody AE, Endo T, Vukovic J, Kutney JP, Choi LS & Misawa M (1988a) Enzymic coupling of catharanthine and vindoline to form 3,4-anhydrovinblastine by horseradish peroxidase. Planta Med. 54: 136–140.

    Google Scholar 

  • Goodbody A, Endo T, Vukovic J & Misawa M(1988b) The coupling of catharanthine and vindoline to form 3,4-anhydrovinblastine by haemoproteins and haemin. Planta Med. 54: 210–214.

    Google Scholar 

  • Gröger D (1985) Alkaloids derived from tryptophan. In: Mothes K, Schütte HR & Luckner M (eds) Biochemistry of Alkaloids (pp 272–313). VEB Deutscher Verlag der Wissenschaften, Berlin.

    Google Scholar 

  • Guéritte F, Bac NV, Langlois Y & Potier P (1980) Biosynthesis of antitumouir alkaloids from Catharanthus roseus. Conversion of 20-deoxyleurosidine into vinblastine. J. Chem. Soc. Chem. Commun. 452–453.

  • Hamburger M & Hostettmann K (1991) Bioactivity in plants: The link between phytochemistry and medicine. Phytochemistry 30: 3864–3874.

    Google Scholar 

  • Hendriks T, Wijsman HJW & Vanloon LC (1991) Petunia peroxidase-A. Isolation, purification and characteristics. Eur. J. Biochem. 199: 139–146.

    Google Scholar 

  • Hilliou F, Van der Fits L & Memelink J (2001) Molecular regulation of monoterpenoid indole alkaloid biosynthesis. In: Romeo JT, Saunders JA & Matthews BF (eds) Regulation of Phytochemicals by Molecular Techniques. Recent Advances in Phytochemistry, Vol 35 (pp 275–95). Elsevier Science.

  • Hilliou F, Costa M, Almeida I, Lopes Cardoso I, Leech M, Ros Barceló A & Sottomayor M (2002) Cloning of a peroxidase enzyme involved in the biosynthesis of pharmaceutically active terpenoid indole alkaloids in Catharanthus roseus (L.) G. Don. In: Acosta M, Rodríguez-López JN & Pedreño MA (eds) Proceedings of the VI International Plant Peroxidase Symposium (pp 152–158). University of Murcia & University of A Coruña.

  • Hirata K, Asada M, Yatani E, Miyamoto K & Miura Y (1993) Effect of near ultraviolet light on alkaloid production in Catharanthus roseus plants. Planta Med. 59: 46–50.

    Google Scholar 

  • Hoyle MC (1977) High resolution of peroxidase-indoleacetic acid oxidase isoenzymes from horseradish by isoelectric focusing. Plant Physiol. 60: 787–793.

    Google Scholar 

  • Hrazdina G & Jensen RA (1992) Spatial organization of enzymes in plant metabolic pathways. Annu. Rev. Plant Physiol. Plant Mol. Biol. 43: 241–267.

    Google Scholar 

  • Karpinski S, Reynolds H, Karpinska B, Wingsle G, Creissen G & Mullineaux P (1999) Systemic signaling and acclimation in response to excess excitation energy in Arabidopsis. Science 284: 654–657.

    Google Scholar 

  • Knobloch KH, Bast G & Berlin J (1982) Medium-and light-induced formation of serpentine and anthocyanins in cell suspension cultures of Catharanthus roseus. Phytochemistry 21: 591–594.

    Google Scholar 

  • Kribii R, Arró M, Del Arco M, González V, Balcells L, Delourme D, Ferrer A, Karst F & Boronat A (1997) Cloning and characterization of the Arabidopsis thaliana SQS1 gene encoding sualene synthase. Involvement of the C-terminal region of the enzyme in the channeling of squalene through the sterol pathway. Eur. J. Biochem. 249: 61–69.

    Google Scholar 

  • Langlois N, Gueritte F, Langlois Y & Potier P (1976) Application of a modification of the Polonovski reaction to the synthesis of vinblastine-type alkaloids. J. Am. Chem. Soc. 98: 7017–7024.

    Google Scholar 

  • López Serrano M & Ros Barceló A (2001) Histochemical localization and developmental expression of peroxidase and polyphenol oxidase in strawberries. J. Amer. Soc. Hort. Sci. 126: 27–32.

    Google Scholar 

  • Loyola-Vargas VM, Méndez-Zeel M, Monforte-Gonzaléz M & Miranda-Ham ML (1992) Serpentine accumulation during greening in normal and tumour tissues of Catharanthus roseus. J. Plant Physiol. 140: 213–217.

    Google Scholar 

  • Mangeney P, Andriamialisoa RZ, Langlois N, Langlois Y & Potier P (1979) Preparation of vinblastine, vincristine, and leurosidine, antitumour alkaloids from Cathranthus spp. (Apocynaceae). J. Am. Chem. Soc. 101: 2243–2245.

    Google Scholar 

  • Marangoni AG, Brown ED, Stanley DW & Yada RY (1989) Tomato peroxidase - rapid isolation and partial charcaterization. J. Food Sci. 54: 1269–1271.

    Google Scholar 

  • Mehlhorn H, Lelandais M, Korth HG & Foyer CH (1996) Ascorbate is the natural substrate for plant peroxidases. FEBS Lett. 378: 203–206.

    Google Scholar 

  • Meijer AH, Verpoorte R & Hoge JHC (1993) Regulation of enzymes and genes involved in terpenoid indole alkaloid biosynthesis in Catharanthus roseus. J. Plant Res. 3: 145–165.

    Google Scholar 

  • Memelink J, Verpoorte R & Kijne JW (2001) ORCAnization of jasmonate-responsive gene expression in alkaloid metabolism. Trends Plant Sci. 6: 212–219.

    Google Scholar 

  • Misawa M, Endo T, Goodbody A, Vukovic J, Chapple C, Choi L & Kutney JP (1988) Synthesis of dimeric indole alkaloids by cell free extracts from cell suspension cultures of Catharanthus roseus. Phytochemistry 27: 1355–1359.

    Google Scholar 

  • Morales M & Ros Barcelo A (1997) A basic peroxidase isoenzyme from vacuoles and cell walls of Vitis vinifera. Phytochemistry 45: 229–232.

    Google Scholar 

  • Moreno PRH, Van der Heijden R & Verpoorte R (1995) Cell and tissue cultures of Catharanthus roseus: a literature survey II. Updating from 1988 to 1993. Plant Cell Tiss. Org. Cult. 42: 1–25.

    Google Scholar 

  • Naaranlahti T, Auriola S & Lapinjoki SP (1991) Growth related dimerization of vindoline and catharanthine in Catharanthus roseus and effect of wounding on the process. Phytochemistry 30: 1451–1453.

    Google Scholar 

  • Nair AR & Showalter AM (1996) Purification and characterization of a wound-inducible cell wall cationic peroxidase from carrot roots. Biochem. Bioph. Res. Co. 226: 254–260.

    Google Scholar 

  • Neuss N, Gorman M, Boaz HE & Cone NJ (1962) Vinca alkaloids. XI. Structures of leurocristine (LCR) and vincaleukoblastine (VLB). J. Am. Chem. Soc. 84: 1509–1510.

    Google Scholar 

  • Neuss N, Gorman M, Hargrove W, Cone NJ, Biemann K, Buchi G & Manning RE (1964) Vinca alkaloids. XXI. The structures of the oncolytic alkaloids vinblastine (VLB) and vincristine (VCR). J. Am. Chem. Soc. 86: 1440–1442.

    Google Scholar 

  • Noble RL, Beer CT & Cutts JH (1958a) Role of chance observations in chemotherapy: Vinca rosea. Ann. N. Y. Acad. Sci. 76: 882–894.

    Google Scholar 

  • Noble RL, Beer CT & Cutts JH (1958b) Further biological activities of vincaleukoblastine - an alkaloid isolated from Vinca rosea (L.). Biochem. Pharm. 1: 347–348.

    Google Scholar 

  • Ochman H, Gerber AS & Hartl DL (1988) Genetic applications of an inverse polymerase chain reaction. Genetics 120: 621–623.

    Google Scholar 

  • Ouwerkerk PB, Hallard D, Verpoorte R & Memelink J (1999) Identification of UV-B light-responsive regions in the promoter of the tryptophan decarboxylase gene from Catharanthus roseus. Plant Mol. Biol. 41: 491–503.

    Google Scholar 

  • Potier P, Langlois N, Langlois Y & Guéritte F (1975) Partial synthesis of vinblastine-type alkaloids. J. Chem. Soc. Chem. Commun. 670–671.

  • Ros Barceló A (2000) Peroxidase and H2O2 production by plant cells: truths and clues. Curr. Topics Phytochem. 3: 197–202.

    Google Scholar 

  • Ros Barceló A & Muñoz R (2000) Metabolic plasticity of plant peroxidases. In: Hemantaranjan A (ed) Advances in Plant Physiology, Vol 3 (pp 71–92). Scientific Publishers (India), Jodhpur.

    Google Scholar 

  • Ros Barceló A, Pomar F, Lopez Serrano M, Martinez P & Pedreño MA (2002) Developmental regulation of the H 2 O 2-producing system and of a basic peroxidase isoenzyme in the Zinnia elegans lignifying xylem. Plant Physiol. Bioch. 40: 325–332.

    Google Scholar 

  • Schütte HR (1986) Secondary plant substances: monoterpenoid indole alkaloids. Progr. Botany 48: 151–166.

    Google Scholar 

  • Scott AI, Gueritte F & Lee SL (1978) Role of anhydrovinblastine in the biosynthesis of the antitumour dimeric indole alkaloids. J. Am. Chem. Soc. 100: 6253–6255.

    Google Scholar 

  • Siegel BZ (1993) Plant peroxidases - an organismic perspective. Plant Growth. Reg. 12: 303–312.

    Google Scholar 

  • Sierra MI, Blom TJ M, Van Iren F & Verpoorte R (1989) A role of peroxidases in alkaloid accumulation in Catharanthus roseus? Planta Med. 55: 665.

    Google Scholar 

  • Sierra MI (1991) Aspects of indole alkaloid accumulation in Tabernaemontana tissue cultures: differentiation, peroxidases and stability. Ph. D. Thesis, Leiden University.

  • Smith JI, Amouzou E, Yamagushi A, McLean S & DiCosmo F (1988) Peroxidase from bioreactor-cultivated Cath-aranthus roseus cell cultures mediates biosynthesis of á-3,4-anhydrovinblastine. Biotechnol. Appl. Bioeng. 10: 568–575.

    Google Scholar 

  • Sottomayor M, de Pinto MC, Salema R, DiCosmo F, Pedreño MA & Ros Barceló A (1996) The vacuolar localization of a basic peroxidase isoenzyme responsible for the synthesis of á-3,4-anhydrovinblastine in Catharanthus roseus (L.) G. Don leaves. Plant Cell Environ. 19: 761–767.

    Google Scholar 

  • Sottomayor M, DiCosmo F & Ros Barceló A (1997) On the fate of catharanthine and vindoline during the peroxidase-mediated enzymatic synthesis of á-3,4-anhydrovinblastine. Enz. Microb. Technol. 21: 543–549.

    Google Scholar 

  • Sottomayor M, Lopéz-Serrano M, DiCosmo F & Ros Barceló A (1998) Purification and characterization of á-3,4-anhydrovinblastine synthase (peroxidase-like) from Catharanthus roseus (L.) G. Don. FEBS Lett. 428: 299–303.

    Google Scholar 

  • Sottomayor M, DiCosmo F & Ros Barceló A (1999) The biogenesis of indole alkaloids. In: Hemantarajan A (ed) Advances in Plant Physiology, Vol 2 (pp 1–41). Scientific Publishers (India), Jodhpur.

    Google Scholar 

  • Sottomayor M & Ros Barceló A (2003) Peroxidase from Catharanthus roseus (L.) G. Don and the biosynthesis of á-3,4-anhydrovinblastine: A specific role for a multifunctional enzyme. Protoplasma 222: 97–105.

    Google Scholar 

  • Stapleton AE (1992) Ultraviolet Radiation and Plants: Burning Questions. Plant Cell 4: 1353–1358.

    Google Scholar 

  • Stuart KL, Kutney JP, Honda T & Worth BR (1978a) Intermediacy of 3,4-dehydrovinblastine in the biosynthesis of vinblastine-type alkaloids. Heterocycles 9: 1419–1426.

    Google Scholar 

  • Stuart KL, Kutney JP, Honda T & Worth BR (1978) Studies on the biosynthesis of the bisindole alkaloids. The final stages in biosynthesis of vinblastine, leurosine and catharine. Heterocycles 9: 1391–1395.

    Google Scholar 

  • Svoboda GH, Neuss N & Gorman M (1959) Alkaloids of Vinca rosea Linn. (Catharanthus roseus G. Don.). V. Preparation and characterization of alkaloids. J. Am. Pharm. Assoc. Am. Pharm. Assoc. 48: 659–666.

    Google Scholar 

  • Takahama U & Oniki T (1991) Participation of peroxidase in the metabolism of 3,4-dihydroxyphenylalanine and hydrogen peroxide in Vacuoles of Vicia faba L. mesophyll cells. Plant Cell Physiol. 32: 745–754.

    Google Scholar 

  • Takahama U (1992) Hydrogen peroxide scavenging systems in vacuoles of mesophyll cells of Vicia faba. Phytochemistry 31: 1127–1133.

    Google Scholar 

  • Takahama U & Oniki T (1997) A peroxidse/phenolics/ascorbate system can scavenge hydrogen peroxidase in plant cells. Physiol. Plantarum 101: 845–852.

    Google Scholar 

  • Taylor CB (1997) Damage Control. Plant Cell 9: 111–114.

    Google Scholar 

  • Tognolli M, Penel C, Greppin H & Simon P (2002) Analysis and expression of the class III peroxidase large gene family in Arabidopsis thaliana. Gene 288: 129–138.

    Google Scholar 

  • Van der Heijden R, Verpoorte R & Ten Hoopen H JG (1989) Cell and tissue cultures of Catharanthus roseus (L.) G. Don: a literature survey. Plant Cell Tiss. Org. Cult. 18: 231–280.

    Google Scholar 

  • Triglia T, Peterson MG & Kemp DJ (1988) A procedure for in vitro amplification of DNA segments that lie outside the boundaries of known sequences. Nucleic Acids Res. 16: 8186.

    Google Scholar 

  • Welinder KG (1992) Superfamily of plant, fungal and bacterial peroxidases. Curr. Opin. Struct. Biol. 2: 388–393.

    Google Scholar 

  • Welinder KG, Justesen AF, Kjaersgard IV, Jensen RB, Rasmussen SK, Jespersen HM & Duroux L (2002) Structural diversity and transcription of class III peroxidases from Arabidopsis thaliana. Eur. J Biochem. 269: 6063–6081.

    Google Scholar 

  • Wink M & Roberts MF (1998) Compartmentation of Alkaloid Synthesis, Transport, and Storage. In: Roberts MF & Wink M (eds) Alkaloids. Biochemistry, Ecology, and Medicinal Applications (pp 239–264). Plenum Press, New York.

    Google Scholar 

  • Wititsuwannakul R, Wititsuwannakul D, Sattaysevana B & Pasitkul P (1997) Peroxidase from Hevea brasiliensis bark: Purification and properties. Phytochemistry 44: 237–241.

    Google Scholar 

  • Yamasaki H (1997) A function of colour. Trends Plant Sci. 2: 7–8.

    Google Scholar 

  • Yamasaki H, Sakihama Y & Ikehara N (1997) Flavonoid-peroxidase reaction as a detoxification mechanism of plant cells against H 2 O 2. Plant Physiol. 115: 1405–1412.

    Google Scholar 

  • Yamasaki H & Grace SC (1998) EPR detection of phytophenoxyl radicals stabilized by zinc ions: Evidence for the redox coupling of plant phenolics with ascorbate in the H 2 O 2-peroxidase system. FEBS Lett. 422: 377–380.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sottomayor, M., Lopes Cardoso, I., Pereira, L. et al. Peroxidase and the biosynthesis of terpenoid indole alkaloids in the medicinal plant Catharanthus roseus (L.) G. Don. Phytochemistry Reviews 3, 159–171 (2004). https://doi.org/10.1023/B:PHYT.0000047807.66887.09

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/B:PHYT.0000047807.66887.09

Navigation