Skip to main content
Log in

Mugti-frequency Superconducting Cavity Stabilized Oscillators (SCSO) for Quantum-Gas Measurements and Gravitational Physics

  • Published:
Journal of Low Temperature Physics Aims and scope Submit manuscript

Abstract

We report on the development of a superconducting cavity stabilized oscillator (SCSO) for use as a high-stability frequency source and for precision measurements. The SCSO system in its optimized condition has a potential frequency stability of parts in 1017 to 1018 over short measurement times (up to 103 s). It can also operate in two resonant modes, which provides useful diagnostics of sources of frequency instability. This paper describes the progress of applying our SCSO to precise measurements of the equation of state of 4He gas near T λ and the concepts of using SCSO in conjunction with other ground and space clocks to perform tests of gravitational and relativistic physics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

REFERENCES

  1. S. R. Stein, and J. P. Turneaure, Proc. IEEE 33, 1249 (1975).

    Google Scholar 

  2. N.-C. Yeh, W. Jiang, and D. M. Strayer, J. Jpn. Microgravity Appl., 15, Suppl. 11, 136 (1998).

    Google Scholar 

  3. W. Jianget al.,J. Jpn. Microgravity Appl. 15, Suppl. II, 157 (1998).

    Google Scholar 

  4. N.-C. Yehet al.,Physica B 280, 557 (2000).

    Google Scholar 

  5. V. B. Braginsky, V. P. Mitrofanov, and V. I. Panov, Systems with Small Dissipation., Ch. 3. Chicago: U Chicago P (1985).

    Google Scholar 

  6. H. Luther, K. Grohmann, and B. Fellmuth, Metrologia 33, 341–352 (1996).

    Google Scholar 

  7. M. R. Moldover, J. Res. Nat'l. Inst. Stand. Tech. 103, 167–175 (1998).

    Google Scholar 

  8. M. P. White, and D. Gugan, Metrologia 29, 37–57 (1992).

    Google Scholar 

  9. J. J. Hurly, and M. R. Moldover, J. Res. NOT Inst. Stand. Tech. 105, 667–688 (2000). and references therein

    Google Scholar 

  10. R. J. Donnelly, Experimental Superfluidity Chicago: U Chicago P (1967).

    Google Scholar 

  11. V. D. Arp, R. D. McCarty, and D. G. Friend, NIST Technical Note 1334 (Revised), US Government Printing Office, Washington (1998).

    Google Scholar 

  12. C. M. Will, Theory and Experiment in Gravitational Physics, Revised Ed. Cambridge UP, New York (1993).

    Google Scholar 

  13. S. R. Jefferts, et al.Procs. 1999 Joint, Meeting of the European Frequency and Time Forum and the IEEE Frequency Control Symposium IEEE Cat. No. 99CH36313, 141–144 (1999).

  14. S. Buchmanet al.,Fundamental Physics in Space: Advances in. Space Research 25, 1251–1254 (2000).

    Google Scholar 

  15. R. F. C. Vessot, Proc. IEEE 79, 1040 (1991).

    Google Scholar 

  16. T. Pirar, et al.Phys. Rev. D 34, 984 (1986).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Corcovilos, T.A., Strayer, D.M., Asplund, N. et al. Mugti-frequency Superconducting Cavity Stabilized Oscillators (SCSO) for Quantum-Gas Measurements and Gravitational Physics. Journal of Low Temperature Physics 134, 431–436 (2004). https://doi.org/10.1023/B:JOLT.0000012591.58110.9c

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/B:JOLT.0000012591.58110.9c

Keywords

Navigation