Skip to main content
Log in

Microhardness and high-velocity impact resistance of HfB2/SiC and ZrB2/SiC composites

  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

The results of Vickers microhardness and high-velocity impact tests on monolithic ZrB2/SiC and HfB2/SiC ultra-high temperature ceramic (UHTC) composites are presented. The UHTC materials exhibit fracture behavior typical of ceramics under indentation and impact loading. The materials are relatively hard with microhardness values of about 15 to 20 GPa. Cracks were observed to extend from the corners of indentations. Impacts of stainless steel and tungsten carbide spheres, with diameters in the 500 to 800 micron range and velocities of 200 to 300 m/s, produced minimal plastic deformation but significant radial and ring cracking at the impact sites. Impacts of micron-scale iron particles traveling at 1 to 3 km/s produced essentially no surface damage.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. D. SAUNDERS, G. ALLEN, P. GAGE and J. REUTHER, “Crew Transfer Vehicle Trajectory Optimization,” AIAA Paper 2001-2885, June 2001.

  2. J. REUTHER, D. KINNEY, S. SMITH, D. KONTINOS, P. GAGE and D. SAUNDERS, “A Reusable Space Vehicle Design Study Exploring Sharp Leading Edges,” AIAA Paper 2001-2884, June 2001.

  3. K. UPADHYA, J.-M. YANG and W. P. HOFFMAN, The Amer. Ceram. Soc. Bull. 76 (1997) 51.

    Google Scholar 

  4. L. KAUFMAN, “Boride Composites—A New Generation of Nose Cap and Leading Edge Materials for Reusable Lifting Re-entry Systems,” AIAA Paper 70-278, Feb. 1970.

  5. E. V. CLOUGHERTY, R. L. POBER and L. KAUFMAN, Trans. Metall. Soc. AIME 242 (1968) 1077.

    Google Scholar 

  6. W. C. TRIPP, H. H. DAVIS and H. C. GRAHAM, Ceram. Bull. 52 (1973) 612.

    Google Scholar 

  7. J. BULL. in 19th Conference on Composite Materials and Structures 157 (CIAC, Cocoa Beach, FL, 1995).

    Google Scholar 

  8. A. G. METCALFE, N. B. ELSNER, D. T. ALLEN, E. WUCHINA, M. OPEKA and E. OPILA, Electrochem. Soc. Proc. 99(38) (1999) 489.

    Google Scholar 

  9. I. G. TALMY, J. A. ZAYKOSKI and M. A. OPEKA, Ceram. Engng. Sci. Proc. 19 (1998) 104.

    Google Scholar 

  10. P. KOLODZIEJ, J. BULL, J. SALUTE and D. L. KEESE, “First Flight Demonstration of a Sharp Ultra-High Temperature Ceramic Nosetip,” NASA TM-112215, Dec. 1997.

  11. J. BULL, P. KOLODZIEJ, J. SALUTE and D. KEESE, “Design, Instrumentation and Preflight Testing of a Sharp Ultra-High Temperature Ceramic Nosetip,” NASA TM-1998-112229, Oct. 1998.

  12. T. KOBAYASHI and D. A. SHOCKEY, Adv. Mater. Proc. 140 (1991) 28.

    Google Scholar 

  13. ANON, “Standard Test Method for Monotonic Equibiaxial Flexural Strength of Advanced Ceramics at Ambient Temperature,” ASTM C 1499-03, July 2003.

  14. B. LAWN and R. WILSHAW, J. Mater. Sci. 10 (1975) 1049.

    Google Scholar 

  15. A. G. EVANS and T. R. WILSHAW, Acta Metall. 24 (1976) 939.

    Google Scholar 

  16. D. R. CLARKE and K. T. FABER, J. Phys. Chem. Solids 48 (1987) 1115.

    Google Scholar 

  17. B. R. LAWN and M. V. SWAIN, J. Mater. Sci. 10 (1975) 113.

    Google Scholar 

  18. B. R. LAWN, T. JENSEN and A. ARORA, J. Mater. Sci. Lett. 11 (1976) 573.

    Google Scholar 

  19. B. R. LAWN and E. R. FULLER, J. Mater. Sci. 10 (1975) 2016.

    Google Scholar 

  20. A. G. EVANS, J. Amer. Ceram. Soc. 56 (1973) 405.

    Google Scholar 

  21. B. R. LAWN, S. M. WIEDERHORN and H. H. JOHNSON, ibid. 58 (1975) 428.

    Google Scholar 

  22. C. G. KNIGHT, M. V. SWAIN and M. M. CHAUDHRI, J. Mater. Sci. 12 (1977) 1573.

    Google Scholar 

  23. S. M. WIEDERHORN and B. R. LAWN, J. Amer. Ceram. Soc. 60 (1977) 451.

    Google Scholar 

  24. W. H. RHODES, E. V. CLOUGHERTY and D. KALISH, “Research and Development of Refractory Oxidation-Resistant Diborides, Part II, Vol. IV: Mechanical Properties,” AFML-TR-68-190 Jan. 1970.

  25. V. E. LYSAGHT and A. DEBELLIS, “Hardness Testing Handbook” (American Chain and Cable Company, 1969).

  26. Y. V. MILMAN, B. A. GALANOV and S. I. CHUGUNOVA, Acta Metallurgica et Materialia 41 (1993) 2523.

    Google Scholar 

  27. L. BSENKO and T. LUNDSTRÖM, J. Less-Comm. Met. 34 (1974) 273.

    Google Scholar 

  28. K. NAKANO, H. MATSUBARA and T. IMURA, ibid. 47 (1976) 259.

    Google Scholar 

  29. V. M. GLAZOV and V. N. VIGDOROVICH, “Microhardness of Metals and Semiconductors” (Consultants Bureau, New York, 1971).

    Google Scholar 

  30. G. D. QUINN, P. J. PATEL and I. LLOYD, J. Res. National Inst. Stand. Techn. 107 (2002) 299.

    Google Scholar 

  31. A. KAKANAKOVA-GEORGIEVA, E. P. TRIFONOVA, R. YAKIMOVA, M. F. MACMILLAN and E. JANZÉN, Cryst. Res. Techn. 34 (1999) 943.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Marschall, J., Erlich, D.C., Manning, H. et al. Microhardness and high-velocity impact resistance of HfB2/SiC and ZrB2/SiC composites. Journal of Materials Science 39, 5959–5968 (2004). https://doi.org/10.1023/B:JMSC.0000041692.72915.e8

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/B:JMSC.0000041692.72915.e8

Keywords

Navigation