Skip to main content
Log in

Validation of an empirical RNA-ligand scoring function for fast flexible docking using RiboDock®

  • Published:
Journal of Computer-Aided Molecular Design Aims and scope Submit manuscript

Abstract

We report the design and validation of a fast empirical function for scoring RNA-ligand interactions, and describe its implementation within RiboDock®, a virtual screening system for automated flexible docking. Building on well-known protein-ligand scoring function foundations, features were added to describe the interactions of common RNA-binding functional groups that were not handled adequately by conventional terms, to disfavour non-complementary polar contacts, and to control non-specific charged interactions. The results of validation experiments against known structures of RNA-ligand complexes compare favourably with previously reported methods. Binding modes were well predicted in most cases and good discrimination was achieved between native and non-native ligands for each binding site, and between native and non-native binding sites for each ligand. Further evidence of the ability of the method to identify true RNA binders is provided by compound selection (`enrichment factor') experiments based around a series of HIV-1 TAR RNA-binding ligands. Significant enrichment in true binders was achieved amongst high scoring docking hits, even when selection was from a library of structurally related, positively charged molecules. Coupled with a semi-automated cavity detection algorithm for identification of putative ligand binding sites, also described here, the method is suitable for the screening of very large databases of molecules against RNA and RNA-protein interfaces, such as those presented by the bacterial ribosome.

Abbreviations: ACD – Available Chemicals Directory; AMP – adenosine monophosphate; EF – enrichment factor; FMN – flavin mononucleotide; FRET – fluorescence resonance energy transfer; RMSD – root mean square deviation; TAR – trans-activation response element; Tat – transcriptional activator protein.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Shoichet, B.K., McGovern, S.L., Wei, B. and Irwin, J.J., Curr. Opin. Chem. Biol., 6 (2002) 439.

    PubMed  Google Scholar 

  2. Schneider, G. and Böhm, H.-J., Drug Discov. Today, 7 (2002) 64–70.

    PubMed  Google Scholar 

  3. Afshar, M., Prescott, C.D. and Varani, G., Curr. Opin. Biotechnol., 10 (1999) 59.

    PubMed  Google Scholar 

  4. Drysdale, M., Lentzen, G., Matassova, N., Murchie, A., Aboul-Ela, F. and Afshar, M., Prog. Med. Chem., 39 (2002) 73.

    PubMed  Google Scholar 

  5. Carter, A.P., Clemons, W.M., Brodersen, D.E., Morgan-Warren, R.J., Wimberly B.T. and Ramakrishnan, V., Nature, 407 (2000) 340.

    PubMed  Google Scholar 

  6. Brodersen, D.E., Clemons, W.M. Jr., Carter, A.P., Morgan-Warren, R.J., Wimberly B.T. and Ramakrishnan V., Cell, 103 (2000) 1143.

    PubMed  Google Scholar 

  7. Srinivasan, J., Leclerc, F., Xu, W., Ellington, A.D. and Cedergren R., Folding Design, 1 (1996) 463.

    PubMed  Google Scholar 

  8. Leclerc, F. and Cedergren R., J. Med. Chem., 41 (1998) 175.

    PubMed  Google Scholar 

  9. Leclerc, F. and Karplus, M., Theo. Chem. Acc., 101 (1999) 131.

    Google Scholar 

  10. Hermann, T. and Westhof, E., J. Med. Chem., 42 (1999) 1250.

    Google Scholar 

  11. Filikov, A.V., Mohan, V., Vickers, T.A., Griffey, R.H., Cook, P.D., Abagyan, R.A. and James, T.L, J. Comput.-Aided Mol. Design, 14 (2000) 593.

    Google Scholar 

  12. Lind, K.E., Du, Z., Fujinaga, K., Peterlin, B.M. and James, T.L., Chem. Biol., 9 (2002) 185.

    PubMed  Google Scholar 

  13. Ewing, T.J.A. and Kuntz, I.D., J. Comput. Chem., 18 (1997) 1175.

    Google Scholar 

  14. Abagyan, R.A., Totrov, M.M. and Kuznetsov, D.N., J. Comput. Chem., 15 (1994) 488.

    Google Scholar 

  15. MDL Information Systems, San Leandro, CA.

  16. Du, Z., Lind, K.E. and James, T.L., Chem. Biol., 9 (2002) 707.

    PubMed  Google Scholar 

  17. Böhm, H.J., J. Comput.-Aided Mol. Design, 8 (1994) 243.

    Google Scholar 

  18. Böhm, H.J., J. Comput.-Aided Mol. Design, 12 (1998) 309.

    Google Scholar 

  19. Rarey, M., Wefing, S. and Lengauer, T., J. Comput.-Aided Mol. Design, 10 (1996) 41.

    Google Scholar 

  20. Schulz-Gasch, T. and Stahl, M., J. Mol. Model. [Online], 9 (2003) 47.

    Google Scholar 

  21. Eldridge, M.D., Murray, C.W., Auton, T.R., Paolini, G.V. and Mee, R.P., J. Comput.-Aided Mol. Design, 11 (1997) 425.

    Google Scholar 

  22. UK Registered Trade Mark E1308667.

  23. Jain, A.N., J. Comput.-Aided Mol. Design, 10 (1996) 427.

    Google Scholar 

  24. Yang, Y., Kochoyan, M., Burgstaller, P., Westhof, E. and Famulok, M., Science, 272 (1996) 1343.

    PubMed  Google Scholar 

  25. Hendlich, M., Acta Crystallogr., D54 (1998) 1178.

    Google Scholar 

  26. http://relibase.ccdc.cam.ac.uk/

  27. We thank reviewer #2 for highlighting the sinA2 correction factor.

  28. Wang, Y., Hamasaki, K. and Rando, R.R., Biochemistry, 36 (1997) 768.

    PubMed  Google Scholar 

  29. Murchie, A.I.H., Davis, B., Isel, C., Afshar, M., Drysdale, M.J., Bower, J., Potter, A.J., Starkey, I.D., Swarbrick, T.M., Mirza, S., Prescott, C.D., Vaglio, P., Aboul-ela, F. and Karn, J., J. Mol. Biol., 336 (2004) 625.

    PubMed  Google Scholar 

  30. Karn, J. and Prescott, C.D., U.S. Pat. No. 6,573,045 (2003).

  31. Davis, B., Afshar, M., Varani, G., Murchie, A.I.H., Karn, J., Lentzen, G., Drysdale, M., Bower, J., Potter, A.J., Starkey, I.D., Swarbrick, T.M. and Aboul-ela, F., J. Mol. Biol., 336 (2004) 343.

    PubMed  Google Scholar 

  32. Aboul-ela, F., Karn, J. and Varani, G., J. Mol. Biol., 253 (1995) 313.

    PubMed  Google Scholar 

  33. Baurin, N., Baker, R., Richardson, C., Chen, I., Foloppe, N., Potter, A., Jordan, A., Roughley, S., Parratt, M., Greaney, P., Morley, D. and Hubbard, R.E., J. Chem. Inf. Comput. Sci., 44 (2004) 643.

    PubMed  Google Scholar 

  34. Chemical Computing Group, http://www.chemcomp.com/

  35. Knowles, D.J.C., Foloppe, N., Matassova, N.B. and Murchie, A.I.H., Curr. Opin. Pharmacol., 2 (2002) 501.

    PubMed  Google Scholar 

  36. Foloppe, N., Chen, I., Davis, B., Hold A., Morley, D. and Howes, R., Bioorg. Med. Chem., 12 (2004) 935.

    PubMed  Google Scholar 

  37. Patel, D.J., Suri, A.K., Jiang, F., Jiang, L., Fan, P., Kumar, R.A. and Nonin, S., J. Mol. Biol., 272 (1997) 645.

    PubMed  Google Scholar 

  38. Nissink, J.W.M., Murray, C., Hartshorn, M., Verdonk, M.L., Cole, J.C. and Taylor, R., Proteins, 49 (2002) 457.

    PubMed  Google Scholar 

  39. Kramer, B., Rarey, M. and Lengauer, T., Proteins, 37 (1999) 228.

    PubMed  Google Scholar 

  40. Barril, X., Hubbard, R.E. and Morley, S.D., Mini Reviews in Medicinal Chemistry, accepted.

  41. Afshar, M., Caves, L.S., Guimard, L., Hubbard, R.E., Calas, B., Grassy, G. and Haiech, J., J. Mol. Biol., 244 (1994) 554.

    PubMed  Google Scholar 

  42. Hermann, T. and Patel, D.J., Science, 287 (2000) 820.

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Morley, S.D., Afshar, M. Validation of an empirical RNA-ligand scoring function for fast flexible docking using RiboDock®. J Comput Aided Mol Des 18, 189–208 (2004). https://doi.org/10.1023/B:JCAM.0000035199.48747.1e

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/B:JCAM.0000035199.48747.1e

Navigation