Skip to main content
Log in

A Sensitivity Analysis of Timing and Costs of Greenhouse Gas Emission Reductions

  • Published:
Climatic Change Aims and scope Submit manuscript

Abstract

This paper analyses the optimal timing and macro-economic costs of carbon emission reductions that mitigate the global average atmospheric temperature increase. We use a macro-economic model in which there are two competing energy sources, fossil-fuelled and non-fossil-fuelled. Technological change is represented endogenously through learning curves, and niche markets exist implying positive demand for the relatively expensive non-fossil-fuelled energy source. Under these conditions, with a temperature increase constraint of 2 ° C, early abatement is found to be optimal, and, comparedto the results of many existing top-down models, the costs of this strategy prove to be low. We perform an extensive sensitivity analysis of our results regarding the uncertainties that dominate various economic and technological modeling parameters. Uncertainties in the learning rate and the elasticity of substitution between the two different energy sources most significantly affect the robustness of our findings.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • Abler, D. G., Rodriguez, A. G., and Shortle, J. S.: 1999, ‘Parameter Uncertainty, CGE Modelling of the Environmental Impacts of Economic Policies’, Environ. Resour. Econ. 14, 75–94.

    Google Scholar 

  • Anderson, D. and Bird, C. D.: 1992, ‘Carbon Accumulation and Technical Progress–A Simulation Study of Costs’, Oxford Bulletin of Economics and Statistics 54, 1–27.

    Google Scholar 

  • Arrow, K. J.: 1961, ‘The Economic Implications of Learning by Doing’, Review of Economic Studies 29, 155–173.

    Google Scholar 

  • Arthur, W. B., Ermoliev, Y. M., and Kanjovski, Y. M.: 1987, ‘Path-Dependent Processes and the Emergence of Macro-Structure’, European J. Operational Research 30, 294–303.

    Google Scholar 

  • Berry, R. S., Heal, G., and Salomon P.: 1978, ‘On a Relation between Economic and Thermodynamic Optima’, Resources and Energy 1, 125–137.

    Google Scholar 

  • Carraro, C., Gerlagh, R., and van der Zwaan, B.: 2003, ‘Endogenous Technical Change in Environmental Macroeconomics’, Editorial, Resource and Energy Economics 25, 1–10.

    Google Scholar 

  • Chakravorty, U., Roumasset, J., and Tse, K.: 1997, ‘Endogenous Substitution among Energy Resources and Global Warming’, J. Political Economy 105, 1201–1234.

    Google Scholar 

  • Chen, B.-L. and Shimomura, K.: 1998, ‘Self-Fulfilling Expectations and Economic Growth: A Model of Technology Adoption and Industrialization’, International Economic Review 39, 151–170.

    Google Scholar 

  • Dosi, G., Ermoliev, Y. M., and Kaniovski, Y.: 1994, ‘Generalized Urn Schemes and Technological Dynamics’, J. Mathematical Economics 23, 1–19.

    Google Scholar 

  • Gerlagh, R., van der Zwaan, B. C. C., Hofkes, M.W., and Klaassen, G.: 2004, ‘Impacts of CO2-Taxes when there are NicheMarkets and Learning-by-Doing’, Environmental and Resource Economics, in press.

  • Gerlagh, R. and van der Zwaan, B. C. C.: 2003, ‘Gross World Product and Consumption in a Global Warming Model with Endogenous Technological Change’, Resource and Energy Economics 25, 35–57.

    Google Scholar 

  • Goulder, L. H. and Schneider, S. H.: 1999, ‘Induced Technological Change and the Attractiveness of CO2 Abatement Policies’, Resource and Energy Economics 21, 211–253.

    Google Scholar 

  • Grübler, A. and Messner, S.: 1998, ‘Technological Change and the Timing of Mitigation Measures’, Energy Economics 20, 495–512.

    Google Scholar 

  • Harrison, G. W., Jones, R., Kimbell, L. J., and Wigle, R.: 1993, ‘How Robust is Applied General Equilibrium Analysis?’, J. Policy Modeling 15, 99–115.

    Google Scholar 

  • Hasselmann, K., Hasselmann, S., Giering, R., Ocana V., and v. Storch, H.: 1997, ‘Sensitivity Study of Optimal CO2 Emission Paths Using a Simplified Structural Integrated Assessment Model (SIAM)’, Clim. Change 37, 345–386.

    Google Scholar 

  • IEA/OECD: 1999, Key World Energy Statistics, International Energy Agency, OECD, Paris.

    Google Scholar 

  • IEA/OECD: 2000, Experience Curves for Energy Technology Policy, International Energy Agency, OECD, Paris.

    Google Scholar 

  • Knapp, K. E.: 1999, ‘Exploring Energy Technology Substitution for Reducing Atmospheric Carbon Emissions’, Energy J. 20, 121–143.

    Google Scholar 

  • Kremer, M. and Marcom C.: 2000, ‘Elephants’, American Economic Review 90, 212–234.

    Google Scholar 

  • Krugman, P.: 1991, ‘History versus Expectations’, Quarterly J. Economics 106, 651–667.

    Google Scholar 

  • Mankiw, N. G., Romer, D., and Weil, D. N.: 1992, ‘A Contribution to the Empirics of Economic Growth’, Quarterly J. Economics 107, 407–437.

    Google Scholar 

  • Manne, A. S., Mendelsohn, R., and Richels R.: 1995, ‘MERGE, A Model for Evaluating Regional and Global Effects of GHG Reduction Policies’, Energy Policy 23, 17–34.

    Google Scholar 

  • McDonald, A. and Schrattenholzer, L.: 2001, ‘Learning Rates for Energy Technologies’, Energy Policy 29, 255–261.

    Google Scholar 

  • Messner, S.: 1995, Endogenized Technological Learning, An Energy Systems Model, WP-95–114, IIASA, Laxenburg, Austria.

    Google Scholar 

  • Nelson, R. R.: 1995, ‘Recent Evolutionary Theorizing about Economic Change’, J. Economic Literature 33, 48–90.

    Google Scholar 

  • Nordhaus, W. D.: 1994, Managing the Global Commons, MIT Press, Cambridge, Massachusetts.

    Google Scholar 

  • Nordhaus, W. D. and Yang, Z.: 1996, ‘A Regional Dynamic General Equilibrium Model of Alternative Climate-Change Strategies’, American Economic Review 86, 741–765.

    Google Scholar 

  • Peck, S. C. and Teisberg, T. J.: 1992, ‘CETA, AModel for Carbon Emissions Trajectory Assessment’, Energy J. 13, 55–77.

    Google Scholar 

  • Portney, P. R. and Weyant, J. P. (eds.): 1999, Discounting and Intergenerational Equity, Resources for the Future, Washington, D.C.

    Google Scholar 

  • Romer, P. M.: 1989, ‘Capital Accumulation and Long-Term Growth’, in Barro, R. J. (ed.), Modern Business Cycles Theory, Blackwell, Oxford, U.K.

    Google Scholar 

  • Schneider, S. H. and Azar, C.: 2001, ‘Are Uncertainties in Climate and Energy Systems A Justi-fication for Stronger Near-Term Mitigation Policies?’, Pew Center on Global Climate Change, www.pewclimate.org/events, Workshop Paper, October 2001.

  • Tol, R. S. J.: 1999, ‘Spatial and Temporal Efficiency, Climate Policy, Applications of FUND’, Environ. Resour. Econ. 14, 33–49.

    Google Scholar 

  • Wigley, T. M. L., Richels, R., and Edmonds, J. A.: 1996, ‘Economic and Environmental Choices, the Stabilization of Atmospheric CO2 Concentrations’, Nature 379, 240–379.

    Google Scholar 

  • Wright, T. P.: 1936, ‘Factors Affecting the Cost of Airplanes’, J. Aeronautical Sciences 3, 122.

    Google Scholar 

  • van der Zwaan, B. C. C., Gerlagh, R., Klaassen, G., and Schrattenholzer L.: 2002, ‘Endogenous Technological Change in Climate Change Modelling’, Energy Economics 24, 1.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gerlagh, R., van der Zwaan, B. A Sensitivity Analysis of Timing and Costs of Greenhouse Gas Emission Reductions. Climatic Change 65, 39–71 (2004). https://doi.org/10.1023/B:CLIM.0000037497.49722.c5

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/B:CLIM.0000037497.49722.c5

Keywords

Navigation