Skip to main content
Log in

Salicylate biodegradation by various algal-bacterial consortia under photosynthetic oxygenation

  • Published:
Biotechnology Letters Aims and scope Submit manuscript

Abstract

Four green microalgae (Chlorella sorokiniana, Chlorella vulgaris, Scenedesmus obliquus and Selenastrum capricornutum), a wild Bolivian microalga strain and two cyanobacteria (Anabaena catenula and Microcystis aeruginosa) were compared for tolerance to salicylate, O2 production capacity and ability to support salicylate degradation by a Ralstonia basilensisstrain in symbiotic microcosms with the microalgae. Microcystis aeruginosa had the highest tolerance to salicylate at 500 mg l−1 and 1500 mg l−1 but only produced 0.7 mg O2 l−1 h−1 in the absence of pollutant. Chlorella sorokiniana resisted salicylate at 1500 mg l−1 with the highest O2 production in the absence of salicylate (26 mg l−1 h−1) closely followed by the Bolivian microalga (23 mg l−1 h−1) and Chlorella vulgaris (21 mg l−1 h−1). Selenastrum capricornutum and Anabaena catenula were completely inhibited by salicylate at 500 mg l−1. When inoculated with Ralstonia sp. and supplied with salicylate, Chlorella sorokiniana had the highest removal rate (19 mg l−1 h−1), followed by the wild Bolivian strain (18 mg l−1 h−1) and Chlorella vulgaris (14 mg l−1 h−1).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Aiba S (1982) Growth kinetics of photosynthetic microorganisms. Adv. Biochem. Eng. 2: 85–156.

    Google Scholar 

  • Baker KH, Herson DS (1978) Interactions between the diatom Thallasiosira pseudonanna and an associated Pseudomonad in a mariculture system. Appl. Environ. Microbiol. 35: 791–796.

    Google Scholar 

  • Bell J, Melcer H, Monteith H, Osinga I, Steel P (1993) Stripping of volatile organic compounds at full-scale municipal wastewater treatment plants. Water Environ. Res. 65: 708–716.

    Google Scholar 

  • Borde X (2001) Association synergique de bactéries et d'une microalgue verte pour la biodegradation de polluants aromatiques modèles dans des cultures batch et continues. Ph.D. Thesis, Rennes, France: Rennes University.

    Google Scholar 

  • Borde X, Guieysse B, Delgado O, Muñoz R, Hatti-Kaul R, Nugier-Chauvin C, Patin, H, Mattiasson B (2003) Synergistic relationships in algal-bacterial microcosms for the treatment of aromatic pollutants. Bioresour. Technol. 86: 293–300.

    Google Scholar 

  • Dakhama A, De la Noüe J, Lavoie MC (1993) Isolation and identification of antialgal substances produced by Pseudomonas aeruginosa. J. Appl. Phycol. 5: 297–306.

    Google Scholar 

  • De-Bashan LE, Bashan Y, Moreno M, Lebsky V, Bustillos JJ (2002) Increased pigment and lipid content, lipid variety, and cell and population size of the microalgae Chlorella spp. when co-immobilized in alginate beads with the microalgae-growthpromoting bacterium Azospirillum brasilense. Can. J. Microbiol. 48: 514–521.

    Google Scholar 

  • Guieysse B, Borde X, Muñoz R, Hatti-Kaul R, Nugier-Chauvin C, Patin H, Mattiasson B (2002) Influence of the initial composition of algal-bacterial microcosms on the degradation of salicylate in a fed-batch culture. Biotechnol. Lett. 24: 531–538.

    Google Scholar 

  • Guieysse B, Cirne MDTG, Mattiasson B (2001) Microbial degradation of phenanthrene and pyrene in a two-liquid phase partitioning bioreactor. Appl. Microbiol. Biotechnol. 56: 796–802.

    Google Scholar 

  • Haines KC, Guillard RRL (1974) Growth of vitamin B12-requiring marine diatoms in mixed laboratory cultures with vitamin B12-producing marine bacteria. J. Phycol. 10: 245–252.

    Google Scholar 

  • Martinez M, Molina E, Garcia F (1995) Influencia de la intensidad de iluminacion en la composicion bioquímica de la microalga marina Tetraselmis sp. Afinidad LI. 459: 359–362.

    Google Scholar 

  • Mouget JL, Dakhama A, Lavoie MC, De la Noüe J (1995) Algal growth enhancement by bacteria: is consumption of photosynthetic oxygen involved? FEMS Microbiol. Ecol. 18: 34–44.

    Google Scholar 

  • Muñoz R, Guieysse B, Mattiasson B (2003) Phenanthrene biodegradation by an algal-bacterial consortium in two-phase partitioning bioreactors. Appl. Microbiol. Biotechnol. 61: 261–267.

    Google Scholar 

  • Oswald JW (1988) Phototrophic microalgae and waste-water treatment. In: Borowitzka MA, Borowitzka LJ, eds. Micro-Algal Biotechnology. Cambridge: Cambridge University Press, pp. 305–328.

    Google Scholar 

  • Rippka R, Deruelles J, Waterbury JB (1979) Genetic assignment strain history and properties of pure cultures of cyanobacteria. J. Gen. Microbiol. 111: 1–61.

    Google Scholar 

  • Skulberg OM (2000). Microalgae as a source of bioactive molecules-experience from cyanophyte research. J. Appl. Phycol. 12: 341–348.

    Google Scholar 

  • Sorokin C, Krauss RW (1958) The effect of light intensity on the growth rate of green algae. Plant. Physiol. 33: 1315–1320.

    Google Scholar 

  • Wolfaardt GM, Lawrence JR, Robarts RD, Caldwell DE (1994) The role of interactions, sessile growth, and nutrient amendments on the degradative efficiency of a microbial consortium. Can. J. Microbiol. 40: 331–340.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bo Mattiasson.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Muñoz, R., Köllner, C., Guieysse, B. et al. Salicylate biodegradation by various algal-bacterial consortia under photosynthetic oxygenation. Biotechnology Letters 25, 1905–1911 (2003). https://doi.org/10.1023/B:BILE.0000003980.96235.fd

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/B:BILE.0000003980.96235.fd

Navigation