Skip to main content
Log in

Discussing the Capabilities of Laplacian Minimization

  • Published:
Brain Topography Aims and scope Submit manuscript

Abstract

This paper discusses the properties and capabilities of linear inverse solutions to the neuroelectromagnetic inverse problem obtained under the assumption of smoothness (Laplacian Minimization). Simple simulated counterexamples using smooth current distributions as well as single or multiple active dipoles are presented to refute some properties attributed to a particular implementation of the Laplacian Minimization coined LORETA. The problem of the selection of the test sources to be used in the evaluation is addressed and it is demonstrated that single dipoles are far from being the worst test case for a smooth solution as generally believed. The simulations confirm that the dipole localization error cannot constitute the tool to evaluate distributed inverse solutions designed to deal with multiple sources and that the necessary condition for the correct performance of an inverse is the adequate characterization of the source space, i.e., the characterization of the properties of the actual generators.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Alarcon, G., Guy, C.N., Binnie, C.D., Walker, S.R., Elwes, R.D.C. and Polkey, C.E. Intracerebral propagation of interictal activity in partial epilepsy: implications for source localisation. J. Neurol. Neurosurg. Psychiatry, 1994, 57: 435-449.

    Google Scholar 

  • Backus, G.E. and Gilbert, J.F. The resolving power of gross earth data. Geophys. J.R. Astron. Soc. 1968, 16: 169-205.

    Google Scholar 

  • Fuchs, M. Wischmann, H. A. and Wagner, M. Generalized minimum norm least squares reconstruction algorithms. In: W. Skrandies (Ed.), ISBET Newsletter, No. 5, 1994: 8-11.

  • Golberg, M.A., (Ed.). Solution Methods for Integral Equations, Plenum Press, New York, 1978.

    Google Scholar 

  • Grave de Peralta Menendez, R., Hauk, O., Gonzalez Andino, S., Vogt, H. and Michel, C.M. Linear inverse solutions with optimal resolution kernels applied to the electromagnetic tomography. Human Brain Mapping 5, 1997: 454-467.

    Google Scholar 

  • Grave de Peralta Menendez, R. and Gonzalez Andino, S.L. A critical analysis of linear inverse solutions. IEEE Trans. Biomed. Eng., 1998, 4: 440-448.

    Google Scholar 

  • Grave de Peralta Menendez, R., Gonzalez Andino, S.L., Morand, S., Michel, C.M. and Landis, T.M. Imaging the electrical activity of the brain: ELECTRA. Human Brain Mapping, 2000, 1: 12.

    Google Scholar 

  • Greenblatt, R. Some comments on LORETA. In: W. Skrandies (Ed.), ISBET Newsletter, No. 5, 1994: 11-13.

  • Groetsch, C.W. The theory of Tihonov regularization for Fredholm equations of first kind. Pitman Publishing Ltd. 1984.

  • Hamalainen, M. Discrete and distributed source estimates. In: W. Skrandies (Ed.), ISBET Newsletter, No. 6, 1995: 9-12.

  • Huiskamp, G. and van Oosterom, A. The depolarization sequence of the human heart surface computed from measured body surface potentials. IEEE Trans. Biomed. Eng., 1988; 35:1047-1058.

    Google Scholar 

  • Ilmoniemi, R.J. Estimating brain source distributions: Comments on LORETA. In: W. Skrandies (Ed.), ISBET Newsletter, No. 6, 1995: 12-14.

  • Lütkenhönner, B. and Grave de Peralta Menendez, R. The resolution field concept. Electroencephalography and Clinical Neurophysiology, 1997, 102: 326-334.

    Google Scholar 

  • Menke, W. Geophysical data analysis: Discrete inverse theory. Academic Press. San Diego, 1989.

    Google Scholar 

  • Messinger-Rapport, B.J. and Rudy, Y. Regularization of the inverse problem in electrocardiography: a model study. Math Biosci., 1998, 89: 79-118.

    Google Scholar 

  • Mosher, J.C. and George, J.S. Comments on LORETA. In: W. Skrandies (Ed.), ISBET Newsletter, No. 5, 1994: 14-17.

  • Nunez, P.L. Comments on LORETA. In: W. Skrandies (Ed.), ISBET Newsletter, No. 6, 1995: 14-16.

  • Pascual Marqui, R.D., Michel, C.M. and Lehmann, D. Low resolution electromagnetic tomography: a new method for localizing electrical activity in the brain. Int. J. Psychophysiol., 1995, 18: 49-65.

    Google Scholar 

  • Tihonov, A.N. and Arsenin, V.Y. Solutions of ill-posed problems. Wiley, New York, 1997.

    Google Scholar 

  • Valdes, P. Grave de Peralta, R. and Gonzalez, S. Comment on LORETA. In: W. Skrandies (Ed.), ISBET Newsletter, No. 5, 1994: 18-21.

  • van Oosterom, A. History and evolution of methods for solving the inverse problem. J. Clinical Neurophysiology, 1992, 8: 371-380.

    Google Scholar 

  • Wagner, M., Fuchs, M., Wischmann, H.A., Drenckhahn, R. and Köhler, T. Smooth reconstructions of cortical sources from EEG and MEG recordings. Neuroimage, 1996, 3: 168.

    Google Scholar 

  • Wahba, G. Spline models for observational data. Society for Industrial and applied mathematics. Philadelphia, Pennsylvania, 1990.

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Grave de Peralta Menendez, R., Gonzalez Andino, S.L. Discussing the Capabilities of Laplacian Minimization. Brain Topogr 13, 97–104 (2000). https://doi.org/10.1023/A:1026603017734

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1026603017734

Navigation