Skip to main content
Log in

The bryophyte paradox: tolerance of desiccation, evasion of drought

Plant Ecology Aims and scope Submit manuscript

Abstract

Vascular plants represent one strategy of adaptation to the uneven and erratic supply of water on land. Desiccation-tolerant (DT) bryophytes represent an alternative, photosynthesising and growing when water is freely available, and suspending metabolism when it is not. By contrast with vascular plants, DT bryophytes are typically ectohydric, carrying external capillary water which can vary widely in quantity without affecting the water status of the cells. External water is important in water conduction, and results in bryophyte leaf cells functioning for most of the time at full turgor; water stress is a relatively brief transient phase before full desiccation. All bryophytes are C3 plants, and their cells are essentially mesophytic in important physiological respects. Their carbohydrate content shows parallels with that of maturing embryos of DT seeds. Initial recovery from moderate periods of desiccation is very rapid, and substantial elements of it appear to be independent of protein synthesis. Desiccation tolerance in effect acts as a device that evades the problems of drought, and in various adaptive features DT bryophytes are more comparable with (mesic) desert ephemerals or temperate winter annuals (but on a shorter time scale, with DT vegetative tissues substituting for DT seeds) than with drought-tolerant vascular plants.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • Abel, W. O. 1956. Die Austrocknungsresistenz der Laubmoose. Sitzungsberichte. Österreische Akademie der Wissenschaften. Mathematisch-naturwissenschaftliche Klasse, Abt.I 165: 619–707.

    Google Scholar 

  • Anderson, J. M., Park, Y.-I. & Chow, W. S. 1997. Photoinactivation and photoprotection of photosystem II in nature. Physiol. Plant. 100: 214–223.

    Google Scholar 

  • Bain, J. T. & Proctor, M. C. F. 1980. The requirement of aquatic bryophytes for free CO2 as an inorganic carbon source: some experimental evidence. New Phytol. 86: 393–400.

    Google Scholar 

  • Beadle, C. L., Ludlow, M. M. & Honeysett, J. L. 1993. Water relations. Pp. 113–128. In: Hall, D. O., Scurlock, J. M. O., Bolhàr-Nordenkampf, H. R., Leegood, R. C. & Long, S. P. (eds), Photosynthesis and production in a changing environment. Chapman & Hall, London.

    Google Scholar 

  • Bewley, J. D. & Oliver, M. J. 1992. Desiccation tolerance in vegetative plant tissues and seeds: protein synthesis in relation to desiccation and a potential role for protection and repair mechanisms. Pp. 141–160. In: Osmond, C. B. & Somero, G. (eds), Water and life: a comparative analysis of water relationships at the organismic, cellular and molecular levels. Springer-Verlag, Berlin.

    Google Scholar 

  • Björkman, O. & Demmig-Adams, B. 1995. Regulation of light energy capture, conversion, and dissipation in leaves of higher plants. Pp. 17–47. In: Schulze, E. D. & Caldwell, M. M. (eds), Ecophysiology of photosynthesis. Springer-Verlag, Berlin.

    Google Scholar 

  • Blockeel, T. L. & Long, D. G. 1998. A check list and census catalogue of British and Irish bryophytes. British Bryological Society, Cardiff.

    Google Scholar 

  • Brown, D. H. & Buck, G. W. 1979. Desiccation effects and cation distribution in bryophytes. New Phytol. 82: 115–125.

    Google Scholar 

  • Buch, H. 1945. Ñber die Wasser-und Mineralstoffversorgung der Moose (Part 1). Commentationes Biologici Societas Scientiarum Fennicae 9(16): 1–44.

    Google Scholar 

  • Buch, H. (1947). Ñber die Wasser-und Mineralstoffversorgung der Moose (Part 2). Commentationes Biologici Societas Scientiarum Fennicae 9(20): 1–61.

    Google Scholar 

  • Clausen, E. 1952. Hepatics and humidity. A study of the occurrence of hepatics in a Danish tract and the influence of relative humidity on their distribution. Dansk Botanisk Arkiv 15: 1–80.

    Google Scholar 

  • Clayton-Greene, K. A., Collins, N. J., Green, T. G. A. & Proctor, M. C. F. 1985. Surface wax, structure and function in leaves of Polytrichaceae. J. Bryol. 13: 549–562.

    Google Scholar 

  • Csintalan, Zs., Proctor, M. C. F. & Tuba, Z. 1999. Chlorophyll fluorescence during drying and rehydration in the mosses Rhytidiadelphus loreus (Hedw.)Warnst., Anomodon viticulosus (Hedw.) Hook & Tayl. and Grimmia pulvinata (Hedw.) Sm. Ann. Bot. 84: 235–244.

    Google Scholar 

  • Dilks, T. J. K. & Proctor, M. C. F. 1974. The pattern of recovery of bryophytes after desiccation. J. Bryol. 8: 97–115.

    Google Scholar 

  • Dilks, T. J. K. & Proctor, M. C. F. 1976. Effects of intermittent desiccation on bryophytes. J. Bryol. 9: 249–264.

    Google Scholar 

  • Dilks, T. J. K. & Proctor, M. C. F. 1979. Photosynthesis, respiration and water content in bryophytes. New Phytol. 82: 97–114.

    Google Scholar 

  • Eskling, M., Arvidsson, P.-A. & Åkerlund, H.-E. 1997. The xanthophyll cycle, its regulation and components. Physiol. Plant. 100: 806–816.

    Google Scholar 

  • Gaff, D. F. 1980. Protoplasmic tolerance of extreme water stress. Pp. 207–230. In: Turner, N. C. & Kramer, P. J. (eds), Adaptation of plants to water and high temperature stress. Wiley, New York.

    Google Scholar 

  • Gilmore, A. M. 1997. Mechanistic aspects of xanthophyll-cycle dependent photoprotection in higher-plant chloroplasts and leaves. Physiol. Plant. 99: 197–209.

    Google Scholar 

  • Gimingham, C. H. & Birse, E. M. 1957. Ecological studies on growth-form in bryophytes. I. Correlations between growth-form and habitat. J. Ecol. 45: 522–545.

    Google Scholar 

  • Hanson, A. D. & Hitz, W. D. 1982. Metabolic responses of mesophytes to plant water deficits. Ann. Rev. Plant Physiol. 33: 163–203.

    Google Scholar 

  • Hébant, C. 1977. The conducting tissues of bryophytes. J. Cramer, Vaduz.

    Google Scholar 

  • Hinshiri, H. M. & Proctor, M. C. F. 1971. The effect of desiccation on subsequent assimilation and respiration of the bryophytes Anomodon viticulosus and Porella platyphylla. New Phytol. 70: 527–538.

    Google Scholar 

  • Höfler, K. 1946. Ñber Trockenhärtung und Härtungsgrenzen einiger Lebermoose. Anzeiger der Akademie der Wissenschaften in Wien. Mathematische-naturwissenschaftliche Klasse 1945: 5–8.

    Google Scholar 

  • Hosokawa, T. & Kubota, H. 1957. On the osmotic pressure and resistance to desiccation of epiphytic mosses from a beech forest, south-west Japan. J. Ecol. 45: 579–591.

    Google Scholar 

  • Jones, H. G. 1992. Plants and microclimate. 2nd ed. Cambridge University Press, Cambridge.

    Google Scholar 

  • Kaiser, W. M. 1987. Effects of water deficit on photosynthetic capacity. Physiol. Plant. 71: 142–149.

    Google Scholar 

  • Koide, R. T., Robichaux, R. H., Morse, S. R. & Smith, C. M. 1989. Plant water status, hydraulic resistance and capacitance. Pp. 161–183. In: Pearcy, R. W., Ehleringer, J., Mooney, H. A. & Rundel, P. W. (eds), Plant physiological ecology. Chapman & Hall, London.

    Google Scholar 

  • Mägdefrau, K. 1982. Life-forms of bryophytes. Pp. 45–58. In: Smith, A. J. E. (ed.), Bryophyte ecology. Chapman & Hall, London.

    Google Scholar 

  • Marschall, M. 1998. Nitrate reductase activity during desiccation and rehydration of the desiccation-tolerant moss Tortula ruralis and the leafy liverwort Porella platyphylla. J. Bryol. 20: 273–285.

    Google Scholar 

  • Marschall, M. & Proctor, M. C. F. 1999. Desiccation tolerance and recovery of the leafy liverwort Porella platyphylla (L.) Pfeiff.: chlorophyll-fluorescence measurements. J. Bryol. 21: 261–267.

    Google Scholar 

  • Marschall, M., Proctor, M. C. F. & Smirnoff, N. 1998. Carbohydrate composition and invertase activity of the leafy liverwort Porella platyphylla. New Phytol. 138: 343–353.

    Google Scholar 

  • Moore, C. J., Luff, S. E. & Hallam, N. D. 1982. Fine structure and physiology of the desiccation-tolerant mosses, Barbula torquata Tayl. and Triquetrella papillata (Hook. f. & Wils.) Broth., during desiccation and rehydration. Bot. Gazette 243: 358–367.

    Google Scholar 

  • Oliver, M. J. 1996. Desiccation-tolerance in vegetative plant cells. Physiol. Plant. 97: 779–787.

    Google Scholar 

  • Oliver, M. J. & Bewley, J. D. 1984. Desiccation and ultrastructure in bryophytes. Adv. Bryol. 2: 91–131.

    Google Scholar 

  • Oliver, M. J. & Bewley, J. D. 1997. Desiccation-tolerance of plant tissues: a mechanistic overview. Hort. Rev. 18: 171–213.

    Google Scholar 

  • Oliver, M. J., Velten, J & Wood, A. J. 2000. Bryophytes as experimental models for the study of environmental stress tolerance: desiccation tolerance in mosses. Plant Ecol. 151(1) in this issue.

  • Oliver, M. J., Wood, A. J. & O.'Mahony, P. 1998. 'To dryness and beyond' -preparation for the dried state and rehydration in vegetative desiccation-tolerant plants. Plant Growth Regul. 24: 193–201.

    Google Scholar 

  • Proctor, M. C. F. 1979a. Structure and eco-physiological adaptation in bryophytes. Pp. 479–509. In: Clarke, G. C. S. & Duckett, J. G. (eds), Bryophyte systematics. Systematics Association special volume No. 14. Academic Press, London.

    Google Scholar 

  • Proctor, M. C. F. 1979b. Surface wax on the leaves of some mosses. J. Bryol. 10: 531–538.

    Google Scholar 

  • Proctor, M. C. F. 1981a. Diffusion resistances in bryophytes. Pp. 219–229. In: Grace, J., Ford, E. D. & Jarvis, P. G. (eds), Plants and their atmospheric environment. 21st Symposium of the British Ecological Society. Blackwell Scientific Publications, Oxford.

    Google Scholar 

  • Proctor, M. C. F. 1981b. Physiological ecology of bryophytes. Adv. Bryol. 1: 79–166.

    Google Scholar 

  • Proctor, M. C. F. 1990. The physiological basis of bryophyte production. Bot. J. Linnean Soc. 104: 61–77.

    Google Scholar 

  • Proctor, M. C. F. 1999. Water-relations parameters of some bryophytes evaluated by thermocouple psychrometry. J. Bryol. 21: 269–277.

    Google Scholar 

  • Proctor, M.C.F. & Smirnoff, N. 2000. Rapid recovery of photosystems on re-wetting desiccation-tolerant mosses: chlorophyll-fluorescence and inhibitor experiments. J. Exp. Bot. 51 (in press).

  • Proctor, M. C. F. & Smith, A. J. E. 1993. Ecological and systematic implications of branching patterns in bryophytes. Pp. 87–110. In: Hoch, P. C. & Stephenson, A. G. (eds), Experimental and molecular approaches to plant biosystematics. Missouri Botanical Garden, St Louis, Mo.

    Google Scholar 

  • Proctor, M. C. F., Nagy, Z., Csintalan, Zs. & Takács, Z. 1998.Watercontent components in bryophytes: analysis of pressure-volume curves. J. Exp. Bot. 49: 1845–1854.

    Google Scholar 

  • Proctor, M. C. F., Raven, J. A. & Rice, S. K. 1992. Stable carbon isotope measurements in Sphagnum and other bryophytes: physiological and ecological implications. J. Bryol. 17: 193–202.

    Google Scholar 

  • Raven, J. A. 1977. The evolution of land plants in relation to supracellular transport processes. Adv. Bot. Res. 5: 152–219.

    Google Scholar 

  • Raven, J. A. 1984. Physiological correlates of the morphology of early vascular plants. Bot. J. Linnean Soc. 88: 105–126.

    Google Scholar 

  • Raven, J. A. 1999. The minimum size of seeds and spores in relation to the ontogeny of homoihydric plants. Funct. Ecol. 13: 5–14.

    Google Scholar 

  • Richards, P. W. 1984. The ecology of tropical forest bryophytes. Pp. 1233–1270. In: Schuster, R. M. (ed.), New manual of bryology. Hattori Botanical Laboratory, Nichinan.

    Google Scholar 

  • Rundel, P. W., Stichler, W., Zander, R.H. & Ziegler, H. 1979. Carbon and hydrogen isotope ratios of bryophytes from arid and humid regions. Oecologia 4: 91–94.

    Google Scholar 

  • Schreiber, U., Bilger, W. & Neubauer, C. 1995. Chlorophyll fluorescence as a nonintrusive indicator for rapid assessment of in vivo photosynthesis. Pp. 49–70. In: Schulze, E. D. & Caldwell, M. M. (eds), Ecophysiology of photosynthesis. Springer-Verlag, Berlin.

    Google Scholar 

  • Slavik, B. 1965. The influence of decreasing hydration level on photosynthetic rate in the thalli of the hepatic Conocephalum conicum. Pp. 195–201. In: Slavik, B. (ed.), Water stress in plants. Proceedings of a symposium held in Prague, September 30- October 4, 1963. W. Junk, The Hague.

    Google Scholar 

  • Smirnoff, N. 1992. The carbohydrates of bryophytes in relation to desiccation tolerance. J. Bryol. 17: 185–191.

    Google Scholar 

  • Smith, E. C. & Griffiths, H. 1996. The occurrence of the chloroplast pyrenoid is correlated with the activity of a CO2-concentrating mechanism and carbon isotope discrimination in lichens and bryophytes. Planta 198: 6–16.

    Google Scholar 

  • Smith, E. C. & Griffiths, H. 1997. A pyrenoid-based carbonconcentrating mechanism is present in terrestrial bryophytes of the class Anthocerotae. Planta 200: 203–212.

    Google Scholar 

  • Tuba, Z., Csintalan, Zs. Badacsonyi, A. & Proctor, M. C. F. 1997. Chlorophyll fluorescence as an exploratory tool for ecophysiological studies on mosses and other small poikilohydric plants. J. Bryol. 19: 401–407.

    Google Scholar 

  • Tuba, Z., Csintalan, Zs. & Proctor, M. C. F. 1996. Photosynthetic responses of a moss, Tortula ruralis ssp. ruralis, and the lichens Cladonia convoluta and C. furcata to water deficit and short periods of desiccation: a baseline study at present-day CO2 concentration. New Phytol. 133: 353–361.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Proctor, M.C. The bryophyte paradox: tolerance of desiccation, evasion of drought. Plant Ecology 151, 41–49 (2000). https://doi.org/10.1023/A:1026517920852

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1026517920852

Navigation