Skip to main content
Log in

Detection and Characterization of a Protein Isoaspartyl Methyltransferase Which Becomes Trapped in the Extracellular Space During Blood Vessel Injury

  • Published:
Journal of Protein Chemistry Aims and scope Submit manuscript

Abstract

Injury to rat blood vessels in vivo was found to release intracellular pools of protein D-aspartyl/L-isoaspartyl carboxyl methyltransferase (PIMT) into the extracellular milieu, where it becomes trapped. This trapped cohort of PIMT is able to utilize radiolabeled S-adenosyl-L-methionine (AdoMet) introduced into the circulation to methylate blood vessel proteins containing altered aspartyl residues. As further shown in this study, methylated substrates are detected only at the specific site of injury. In vitro studies more fully characterized this endogenous PIMT activity in thoracic aorta and inferior vena cava. Methylation kinetics, immunoblotting, and the lability of methylated substrates at mild alkaline pH were used to demonstrate that both types of blood vessel contain an endogeneous protein D-aspartyl/L-isoaspartyl carboxyl methyltransferase (PIMT). At least 50% of the PIMT activity is resistant to nonionic detergent extraction, suggesting that the enzyme activity becomes trapped within or behind the extracellular matrix (ECM). Quantities of lactate dehydrogenase (LDH), another soluble enzyme of presumed intracellular origin, were found to be similarly trapped in the extracellular space of blood vessels.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  • Ahn, S. S., Arca, M. J., et al. (1990). Histological and morphologic effects of rotary atherectomy on human cadaver arteries, Ann. Vasc. Surg. 4, 563–569.

    Article  CAS  PubMed  Google Scholar 

  • Aswad, D. (1995). Purification and properties of protein L-isoaspartyl methyltransferase, in Deamidation and Isoaspartate Formation in Peptides and Proteins (Aswad, D. W., ed.), CRC Press, Boca Raton, Florida, pp. 32–45.

    Google Scholar 

  • Aswad, D. W., and Deight, E. A. (1983). Endogenous substrates for protein carboxyl methyltransferase in cytosolic fractions of bovine brain, J. Neurochem. 31, 1702–1709.

    Article  Google Scholar 

  • Ben, B. G., Paz, A., et al. (1993). The uniquely distributed isoprenylated protein methyltransferase activity in the rat brain is highly expressed in the cerebellum, Biochem. Biophys. Res. Commun. 195, 282–288.

    Article  Google Scholar 

  • Bert, J. L., Pearce, R. H., et al. (1980). Characterization of collagenous meshworks by volume exclusion of dextrans, Biochem. J. 191, 761–768.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Boivin, D., Bilodeau, D., and Beliveau, R. (1995). Immunochemical characterization of L-isoaspartyl-protein carboxyl methyltransferase from mammalian tissues, Biochem. J. 309, 993–998.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Campbell, E., Pierce, J., et al. (1991). Evaluation of extracellular matrix turnover, Chest 99, 49S.

    Article  CAS  PubMed  Google Scholar 

  • Campbell, J., Kocher, O., et al. (1989). Cytodifferentiation and expression of alpha-smooth muscle actin mRNA and protein during primary culture of aortic smooth muscle cells, Arteriosclerosis 9, 633–643.

    Article  CAS  PubMed  Google Scholar 

  • Chameley-Campbell, J., Cambell, G. R., and Ross, R. (1979). The smooth muscle cell in culture, Physiol. Rev. 59, 2–61.

    Google Scholar 

  • Clarke, S. (1985). Protein carboxyl methyltransferases: Two distinct classes of enzymes, Annu. Rev. Biochem. 54, 479–50.

    Article  CAS  PubMed  Google Scholar 

  • Decker, T., and Lohmann-Matthes, M. (1988). A quick and simple method for the quantitation of lactate dehydrogenase release in measurements of cellular cytotoxicity and tumor necrosis factor (TNF) activity, J. Immunol. Meth. 15, 61–69.

    Article  Google Scholar 

  • Ghomashchi, F., Zhang, X., et al. (1995). Binding of prenylated and polybasic peptides to membranes: Affinities and intervesicle exchange, Biochemistry 34, 11910–11918.

    Article  CAS  PubMed  Google Scholar 

  • Gilbert, J. M., Fowler, A., et al. (1988). Purification of homologous protein carboxyl methyltransferase isozymes from human and bovine erythrocytes, Biochemistry 27, 5227–5233.

    Article  CAS  PubMed  Google Scholar 

  • Gingras, D., Menard, P., and Beliveau, R. (1991). Protein carboxyl methylation in kidney brush-border membranes, Biochim. Biophys. Acta 1066, 261–267.

    Article  CAS  PubMed  Google Scholar 

  • Gingras, D., Boivin, D., and Beliveau, R. (1994). Asymmetrical distribution of L-isoaspartyl protein carboxyl methyltransferases in the plasma membranes of rat kidney cortex, Biochem. J. 297, 145–150.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Giulidori, P., and Stramentinoli, G. (1984). A radioenzymatic method for S-adenosyl-L-methionine determination in biological fluids, Anal. Biochem. 137, 217–220.

    Article  CAS  PubMed  Google Scholar 

  • Harlow, E., and Lane, D. eds. (1988). Antibodies—A Laboratory Manual, Cold Spring Harbor Laboratory, Cold Springer Harbor, New York.

    Google Scholar 

  • Heimark, R. L., and Schwartz, S. M. (1988). Cellular organization of blood vessels in development and disease, in Endothelial Cells (Ryan, U.S., ed.), CRC Press, Boca-Raton, Florida, Vol. 2, pp. 104–114.

    Google Scholar 

  • Johnson, D. J., LaBourene, J., et al. (1993). Relative efficiency of incorporation of newly synthesized elastin and collagen into aorta, pulmonary artery and pulmonary vein of growing pigs, Connect. Tiss. Res. 29, 213–221.

    Article  CAS  Google Scholar 

  • Kimzey, A. L., and McFadden, P. N. (1994). Spontaneous methylation of hemoglobin by S-adenosylmethionine by a specific and saturable mechanism, J. Protein Chem. 13, 537–546.

    Article  CAS  PubMed  Google Scholar 

  • Laemmli, U.K. (1970). Cleavage of structural proteins during the assembly of the head of bacteriophage T4, Nature 227, 680–685.

    Article  CAS  PubMed  Google Scholar 

  • Lindquist, J. A., Barofsky, E., and McFadden, P. N. (1996). Determination of two sites of automethylation in bovine erythrocyte (D-aspartyl/L-isoaspartyl) carboxyl methyltransferase, J. Protein Chem. 15, 115–122.

    Article  CAS  PubMed  Google Scholar 

  • Lowenson, J. D., and Clarke, S. (1992). Recognition of D-aspartyl residues in polypeptides by the erythrocyte L-isoaspartyl/D-aspartyl protein methyltransferase. Implications for the repair hypothesis, J. Biol. Chem. 267, 5985–5995.

    Article  CAS  PubMed  Google Scholar 

  • McFadden, P. N., and Clarke, S. (1982). Methylation at D-aspartyl residues in erythrocytes: Possible step in the repair of aged membrane proteins, Proc. Natl. Acad. Sci. USA 79, 2460–2464.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • McFadden, P. N., Horwitz, J., and Clarke, S. (1983). Protein carboxyl methyltransferase from cow eye lens, Biochem. Biophys. Res. Commun. 113, 418–424.

    Article  CAS  PubMed  Google Scholar 

  • Meyer, F. A., Koblentz, M., and Silberberg, A. (1977). Structural investigation of loose connective tissue by using a series of dextran fractions as non-interacting macromolecular probes, Biochem. J. 161, 285–291.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Monos, E., Berczi, V., and Nadasy, G. (1995). Local control of veins: Biomechanical, metabolic and humoral aspects, Physiol. Rev. 75, 611–666.

    Article  CAS  PubMed  Google Scholar 

  • O'Conner, C. M., Aswad, D. W., and Clarke, S. (1984). Mammalian brain and erythrocyte carboxyl methyltranserases are similar enzymes that recognize both D-aspartyl and L-isoaspartyl, Proc. Natl. Acad. Sci. USA 81, 7757.

    Article  Google Scholar 

  • Owens, G. K. (1995). Regulation of differentiation of vascular smooth muscle cells, Physiol. Rev. 75, 487–517.

    Article  CAS  PubMed  Google Scholar 

  • Paik, W. K., and Kim, S., eds. (1990). Protein Methylation, CRC Press, Boca Raton, Florida.

    Google Scholar 

  • Pearce, R. H., and Laurent, T. C. (1977). Exclusion of dextrans by meshworks of collagenous fibres, Biochem. J. 163, 617–625.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pema, A. F., Ingrosso, D., et al. (1993). Enzymatic methyl esterification of erythrocyte membrane proteins is impaired in chronic renal failure. Evidence for high levels of the natural inhibitor S-adenosylhomocysteine, J. Clin. Invest. 91, 2497–2503.

    Article  PubMed Central  Google Scholar 

  • Robert, L., and Labat-Robert, J. (1995). Extracellular matrix, in Molecular Basis of Aging (Macieira-Coelho, ed.), CRC Press, Boca Raton, Florida, pp. 459–488.

    Google Scholar 

  • Takemoto, L. J. (1995). Degradation of aspartyl and asparaginyl residues of lens protein in vivo, in Deamidation and Isoaspartate Formation in Proteins and Peptides (Aswad, D. W., ed.), CRC Press, Boca Raton, pp. 157–166.

    Google Scholar 

  • Weber, D. J., and McFadden, P. M. (1997). Injury-induced enzymatic methylation of aging collagen in the extracellular matrix of blood vessels, J. Protein Chem., 269–281.

  • Xie, H., and Clarke, S. (1994). An enzymatic activity in bovine brain that catalyzes the reversal of the C-terminal methyl esterification of protein phosphatase 2A, Biochem. Biophys. Res. Commun. 203, 1710–1715.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Weber, D.J., McFadden, P.N. Detection and Characterization of a Protein Isoaspartyl Methyltransferase Which Becomes Trapped in the Extracellular Space During Blood Vessel Injury. J Protein Chem 16, 257–267 (1997). https://doi.org/10.1023/A:1026300924908

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1026300924908

Navigation