Skip to main content
Log in

Down regulation of Cinnamyl Alcohol Dehydrogenase, a lignification enzyme, in Eucalyptus camaldulensis

  • Published:
Molecular Breeding Aims and scope Submit manuscript

Abstract

A procedure for A. tumefaciens-mediated genetic transformation of a juvenile E. camaldulensis clone is presented. CAD antisense full-length cDNAs from Eucalyptus gunnii or Nicotiana tabacum was introduced under the control of the CaMV 35S DE promoter. From 44 individual transgenic shoots selected by PCR analysis, 32% exhibited a significant reduction of CAD activity, up to 83%. The use of the heterologous tobacco CAD cDNA construct was less efficient (up to 65% reduction). Transcript levels in 3 lines obtained using the homologous eucalyptus cDNA confirmed the under-expression of the CAD gene, and Southern blot data indicated a low transgene copy number ranging between 1 and 3. The most down-regulated plant contained a single transgene copy. Therefore, for the first time in eucalyptus, genetically modified plantlets exhibiting a strong inhibition of CAD activity associated with decreased transcription were recovered. Five transgenic lines, transferred to the greenhouse for 10 months, went through a wood chemical analysis that showed no differences in lignin quantity (through Fourier transform infrared spectroscopy), composition (through analytical pyrolysis) or pulp yield (through Kraft pulping) compared to control trees. Despite the down-regulation of the CAD gene in this Eucalyptus species of economic interest, the lack of significant changes in lignin profiles indicates that probably the trees were not sufficiently suppressed in CAD throughout development to exhibit obvious modifications in lignin and pulping. This raises the problem of the requirements for an efficient modulation of lignification in trees such as eucalyptus.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Baucher M., Chabbert B., Pilate G., Van Doorsselaere J., Tollier M.-T., Petit-Conil M. et al. 1996. Red xylem and higher lignin extractability by down-regulating a cinnamyl alcohol dehydrogenase in poplar (Populus tremula × P. alba). Plant Physiol. 112: 1479–1490.

    Google Scholar 

  • Baucher M., Monties B., Van Montagu M. and Boerjan W. 1998. Biosynthesis and genetic engineering of lignin. Crit. Rev. Plant Sci. 17: 125–197.

    Google Scholar 

  • Boudet A.M. 2000. Lignins and lignification: Selected issues. Plant Physiol. Biochem. 38: 81–96.

    Google Scholar 

  • Faix O., Fortmann I., Bremer J. and Meier D. 1991. Thermal degradation products of wood - A collection of electron-impact (EI) mass spectra of polysaccharid derived products. Holz als Roh-und Werkstoff 49: 299–304.

    Google Scholar 

  • Faix O., Fortmann I., Bremer J. and Meier D. 1991. Thermal degradation products of wood - Gas chromatographic separation and mass spectrometric characterization of polysaccharid derived products. Holz als Roh-und Werkstoff 49: 213–219.

    Google Scholar 

  • Faix O., Meier D. and Fortmann I. 1990. Thermal degradation products of wood - Gas chromatographic separation and mass spectrometric characterization of monomeric lignin derived products. Holz als Roh-und Werkstoff 48: 281–285.

    Google Scholar 

  • Gawel N.J. and Jarret R.L. 1991. A modified CTAB DNA extraction procedure for Musa and Ipomoea. Plant Molec. Biol. Rep. 9: 262–266.

    Google Scholar 

  • Goffner D., Campbell M.M., Campargue C., Clastre M., Borderies G., Boudet A. et al. 1994. Purification and characterization of cinnamoyl-coenzyme A: NADP oxidoreductase in Eucalyptus gunnii. Plant Physiol. 106: 625–632.

    Google Scholar 

  • Grima-Pettenati J., Feuillet C., Goffner D., Borderies G. and Boudet A.M. 1993. Molecular cloning and expression of a Eucalyptus gunnii cDNA clone encoding cinnamyl alcohol dehydrogenase. Plant Mol. Biol. 21: 1085–1095.

    Google Scholar 

  • Halpin C., Knight M.E., Foxon G.A., Campbell M.M., Boudet A.M., Boon J.J. et al. 1994. Manipulation of lignin quality by downregulation of cinnamyl alcohol dehydrogenase. Plant J. 6: 339–350.

    Google Scholar 

  • Harcourt R.L., Kyozuka J., Floyd R.B., Bateman K.S., Tanaka H., Decrocq V. et al. 2000. Insect-and herbicide-resistant transgenic eucalypts. Mol. Breed. 6: 307–315.

    Google Scholar 

  • Ho C.-K., Chang S.-H., Tsay J.-Y., Tsay C.-J., Chiang V.L. and Chen Z.-Z. 1998. Agrobacterium tumefaciens-mediated transformation of Eucalyptus camaldulensis and production of transgenic plants. Plant Cell Rep. 17: 675–680.

    Google Scholar 

  • Hood E., Gelvin S.B., Melchers L.S. and Hoekema A. 1993. New Agrobacterium helper plasmids for gene transfer to plants. Transgenic. Res. 2: 208–218.

    Google Scholar 

  • Horsch R.B., Fry J.E., Hoffman N.L., Eichholtz D., Rogers S.G. and Fraley R.T. 1985. A simple and general method for transferring genes into plants. Science 227: 1229–1231.

    Google Scholar 

  • Lapierre C., Pollet B., Petit-Conil M., Toval G., Romero J., Pilate G. et al. 1999. Structural alterations of lignins in transgenic poplars with depressed cinnamyl alcohol dehydrogenase or caffeic acid O-methyltransferase activity have an opposite impact on the efficiency of industrial kraft pulping. Plant Physiol. 119: 153–164.

    Google Scholar 

  • Llewellyn D.J. 1999. Herbicide tolerant forest trees. In: Jain S.M. and Minocha S.C. (eds), Molecular Biology of Woody Plants. Vol. 2. Kluwer Academic Publishers, Dordrecht, Netherlands, pp. 439–466.

    Google Scholar 

  • Machado L.O.R., de Andrade G.M., Cid L.P.B., Penchel R.M. and Brasileiro A.C.M. 1997. Agrobacterium strain specificity and shooty tumour formation in eucalypt (Eucalyptus grandis × E. urophylla). Plant Cell Rep. 16: 299–303.

    Google Scholar 

  • Mullins K.V., Llewellyn D.J., Hartney V.J., Strauss S. and Dennis E.S. 1997. Regeneration and transformation of Eucalyptus camaldulensis. Plant Cell Rep. 16: 787–791.

    Google Scholar 

  • Pilate G., Guiney E., Holt K., Petit-Conil M., Lapierre C., Leplé J.-C. et al. 2002. Field and pulping performances of transgenic trees with altered lignification. Nature Biotechnol. 20: 607–612.

    Google Scholar 

  • Rodrigues J., Faix O. and Pereira H. 1998. Determination of lignin content of Eucalyptus globulus wood using FTIR spectroscopy. Holzforschung 52: 46–50.

    Google Scholar 

  • Rodrigues J., Graça J. and Pereira H. 2001. Influence of tree eccentric growth on syringyl/guaiacyl ratio in Eucalyptus globulus wood lignin assessed by analytical pyrolysis. J. Anal. Appl. Pyrolysis 58-59: 481–489.

    Google Scholar 

  • Rodrigues J., Meier D., Faix O. and Pereira H. 1999. Determination of tree to tree variation in syringyl/guaiacyl ratio of Eucalyptus globulus wood lignin by analytical pyrolysis. J. Anal. Appl. Pyrolysis 48: 121–128.

    Google Scholar 

  • Sambrook J., Fritsch E.F. and Maniatis T. 1989. Molecular Cloning: A Laboratory Manual. 2nd edn. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, Plainview, NY, USA.

    Google Scholar 

  • Silva M.L.F.M. 1998. Estudo da qualidade (anatómica, química e papeleira) da produção lenhosa de eucalipto (E. globulus e E. camaldulensis) em sistemas intensivos de muito curta rotação. High Institute of Agronomy, Lisbon.

    Google Scholar 

  • Stewart D., Yahiaoui N., McDougall G.J., Myton K., Marque C., Boudet A.M. et al. 1997. Fourrier-transform infrared and Raman spectroscopic evidence for the incorporation of cinnamaldehydes into the lignin of transgenic tobacco (Nicotiana tabacum L.) plants with reduced expression of cinnamyl alcohol dehydrogenase. Planta. 201: 311–318.

    Google Scholar 

  • Whetten R.W., MacKay J.J. and Sederoff R.R. 1998. Recent advances in understanding lignin biosynthesis. Annu. Rev. Plant Physiol. Plant Mol. Biol. 49: 585–609.

    Google Scholar 

  • World Rainforest Movement 2001. Japan: Paper industry involved in genetic engineering of eucalyptus. Bulletin 9.

  • Yahiaoui N., Marque C., Corbière H. and Boudet A.M. 1998. Comparative efficiency of different constructs for down-regulation of tobacco cinnamyl alcohol dehydrogenase. Phytochemistry 49: 295–306.

    Google Scholar 

  • Yahiaoui N., Marque C., Myton K.E., Negrel J. and Boudet A.M. 1998. Impact of different levels of cinnamyl alcohol dehydrogenase down-regulation on lignins of transgenic tobacco plants. Planta. 204: 8–15.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Valério, L., Carter, D., Rodrigues, J.C. et al. Down regulation of Cinnamyl Alcohol Dehydrogenase, a lignification enzyme, in Eucalyptus camaldulensis . Molecular Breeding 12, 157–167 (2003). https://doi.org/10.1023/A:1026070725107

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1026070725107

Navigation