Skip to main content
Log in

Physiological Impacts of Elevated CO2 Concentration Ranging from Molecular to Whole Plant Responses

  • Published:
Photosynthetica

Abstract

The dynamics of the terrestrial ecosystems depend on interactions between a number of biogeochemical cycles (i.e. carbon, nutrient, and hydrological cycles) that may be modified by human actions. Conversely, terrestrial ecosystems are important components of these cycles that create the sources and sinks of important greenhouse gases (e.g. carbon dioxide, methane, nitrous oxide). Especially, carbon is exchanged naturally among these ecosystems and the atmosphere through photosynthesis, respiration, decomposition, and combustion processes. Continuous increase of atmospheric carbon dioxide (CO2) concentration has led to extensive research over the last two decades, during which more then 1 400 scientific papers describing impacts of elevated [CO2] (EC) on photosynthesis have been published. However, the degree of response is very variable, depending on species, growing conditions, mineral nutrition, and duration of CO2 enrichment. In this review, I have summarised the major physiological responses of plants, in particular of trees, to EC including molecular and primary, especially photosynthetic, physiological responses. Likewise, secondary (photosynthate translocation and plant water status) and tertiary whole plant responses including also plant to plant competition are shown.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Aiken, R.M., Smucker, A.J.M.: Root system regulation of whole plant growth.-Annu. Rev. Phytopathol. 34: 325-346, 1996.

    Google Scholar 

  • Amthor, J.S.: Respiration in a future, higher-CO2 world: opinion.-Plant Cell Environ. 14: 13-20, 1991.

    Google Scholar 

  • Amthor, J.S.: Increasing atmospheric CO2 concentration, water use, and water stress: scaling up from the plant to the landscape.-In: Luo, Y., Mooney, H.A. (ed.): Carbon Dioxide and Environmental Stress. Pp. 33-59. Academic Press, San Diego 1999.

    Google Scholar 

  • Atkinson, C.J., Taylor, J.M.: Effects of elevated CO2 on stem growth, vessel area and hydraulic conductivity of oak and cherry seedlings.-New Phytol. 133: 617-626, 1996.

    Google Scholar 

  • Besford, R.T., Mousseau, M., Matteucci, G.: Biochemistry, physiology and biophysics of photosynthesis.-In: Jarvis, P.G. (ed.): European Forests and Global Change. The Likely Impacts of Rising CO2 and Temperature. Pp. 29-78. Cambridge University Press, Cambridge 1998.

    Google Scholar 

  • Brenner, M.L.: The role of hormones in photosynthetic partitioning and seed filling.-In: Davie, P.J. (ed.): Plant Hormones and Their Role in Plant Growth and Development. Pp. 474-493. Kluwer, Dordrecht 1987.

    Google Scholar 

  • Caemmerer, S. von: Biochemical Models of Leaf Photosynthesis.-CSIRO Publishing, Collingwood 2000.

    Google Scholar 

  • Cannell, M.G.R., Thornley, J.H.M.: Modelling the components of plant respiration: Some guiding principles.-Ann. Bot. 85: 45-54, 2000.

    Google Scholar 

  • Ceulemans, R.: Direct impacts of CO2 and temperature on physiological processes in trees.-In: Mohren, G.M.J., Kramer, K., Sabaté, S. (ed.): Impacts of Global Change on Tree Physiology and Forest Ecosystems. Pp. 3-14. Kluwer Academic Publishers, Dordrecht-Boston-London 1997.

    Google Scholar 

  • Ceulemans, R., Mousseau, M.: Effects of elevated atmospheric CO2 on woody plants.-New Phytol. 127: 425-446, 1994.

    Google Scholar 

  • Conroy, J.P.: Influence of elevated atmospheric CO2 concentrations on plant nutrition.-Aust. J. Bot. 40: 445-456, 1992.

    Google Scholar 

  • Conroy, J.P., Milham, P.J., Mazur, M., Barlow, E.W.: Growth, dry weight partitioning and wood properties of Pinus radiata D. Don after 2 years of CO2 enrichment.-Plant Cell Environ. 13: 329-337, 1990.

    Google Scholar 

  • Curtis, P.S., Wang, X.: A meta-analysis of elevated CO2 effects on woody plant mass, form, and physiology.-Oecologia 113: 299-313, 1998.

    Google Scholar 

  • DeLucia, E.H., Sasek, T.W., Strain, B.R.: Photosynthetic inhibition after long-term exposure to elevated levels of atmospheric carbon dioxide.-Photosynth. Res. 7: 175-184, 1985.

    Google Scholar 

  • Dyckmans, J., Flessa, H., Polle, A., Beese, F.: The effect of elevated [CO2] on uptake and allocation of C-13 and N-15 in beech (Fagus sylvatica L.) during leafing.-Plant Biol. 2: 113-120, 2000.

    Google Scholar 

  • Eamus, D., Jarvis, P.G.: The direct effects of increase in the global atmospheric CO2 concentration on natural and commercial temperate trees and forests.-In: Begon, M., Fitter, A.H., Ford, E.D., MacFadyen, A. (ed.): Advances in Ecological Research. Pp. 1-55. Academic Press, London-Tokyo-Toronto 1989.

    Google Scholar 

  • Eichelmann, H., Laisk, A.: Ribulose-1,5-bisphosphate carboxylase/oxygenase content, assimilatory charge, and mesophyll conductance in leaves.-Plant Physiol. 119: 179-189, 1999.

    Google Scholar 

  • Farquhar, G.D., Caemmerer, S. von, Berry, J.A.: A biochemical model of photosynthetic CO2 assimilation in leaves of C3 species.-Planta 149: 78-90, 1980.

    Google Scholar 

  • Field, C.B.: Plant physiology of the “missing” carbon sink.-Plant Physiol. 125: 25-28, 2001.

    Google Scholar 

  • Field, C.B., Jackson, R.B., Mooney, H.A.: Stomatal responses to increased CO2: implications from the plant to the global scale.-Plant Cell Environ. 18: 1214-1225, 1995.

    Google Scholar 

  • Flügge, U.-I., Heldt, H.W.: Metabolic translocators of the chloroplast envelope.-Annu. Rev. Plant Physiol. Plant mol. Biol. 42: 129-144, 1991.

    Google Scholar 

  • Gielen, B., Jach, M.E., Ceulemans, R.: Effects of season, needle age, and elevated atmospheric CO2 on chlorophyll fluorescence parameters and needle nitrogen concentration in Scots pine (Pinus sylvestris).-Photosynthetica 38: 13-21, 2000.

    Google Scholar 

  • Gonzàlez-Meler, M.A., Ribas-Carbó, M., Siedow, J.N., Drake, B.G.: Direct inhibition of plant mitochondrial respiration by elevated CO2.-Plant Physiol. 112: 1349-1355, 1996.

    Google Scholar 

  • Gonzàlez-Meler, M.A., Siedow, J.N.: Direct inhibition of mitochondrial respiratory enzymes by elevated CO2: does it matter at the tissue or whole-plant level?-Tree Physiol. 19: 253-259, 1999.

    Google Scholar 

  • Granier, A., Biron, P., Lemoine, D.: Water balance, transpiration and canopy conductance in two beech stands.-Agr. Forest Meteorol. 100: 291-308, 2000.

    Google Scholar 

  • Griffin, K.L., Seemann, J.R.: Plants, CO2 and photosynthesis in the 21st century.-Chem. Biol. 3: 245-254, 1996.

    Google Scholar 

  • Griffin, K.L., Sims, D.A., Seemann, J.R.: Altered night-time CO2 concentration affects the growth, physiology and biochemistry of soybean.-Plant Cell Environ. 22: 91-99, 1999.

    Google Scholar 

  • Gunderson, C.A., Norby, R.J., Wullschleger, S.D.: Foliar gas exchange responses of two deciduous hardwoods during 3 years of growth in elevated CO2: no loss of photosynthetic enhancement.-Plant Cell Environ. 16: 797-807, 1993.

    Google Scholar 

  • Hardy, R.W.F., Havelka, U.D.K.: Symbiotic N2 fixation: Multifold enhancement by CO2-enrichment of field-grown soybeans.-Plant Physiol. 48: 35, 1975.

    Google Scholar 

  • Harley, P.C., Baldocchi, D.D.: Scaling carbon dioxide and water vapour exchange from leaf to canopy in a deciduous forest. I. Leaf model parametrization.-Plant Cell Environ. 18: 1146-1156, 1995.

    Google Scholar 

  • Hättenschwiler, S.: Tree seedling growth in natural deep shade: functional traits related to interspecific variation in response to elevated CO2.-Oecologia 129: 31-42, 2001.

    Google Scholar 

  • Heath, J.: Stomata of trees growing in CO2-enriched air show reduced sensitivity to vapour pressure deficit and drought.-Plant Cell Environ. 21: 1077-1088, 1998.

    Google Scholar 

  • Heath, J., Kerstiens, G.: Effects of elevated CO2 on leaf gas exchange in beech and oak at two levels of nutrient supply: consequences for sensitivity to drought in beech.-Plant Cell Environ. 20: 57-67, 1997.

    Google Scholar 

  • Hsiao, T.C., Jackson, R.B.: Interactive effects of water stress and elevated CO2 on growth, photosynthesis, and water use efficiency.-In: Luo, Y., Mooney, H.A. (ed.): Carbon Dioxide and Environmental Stress. Pp. 3-31. Academic Press, San Diego 1999.

    Google Scholar 

  • Huber, S.C., Huber, J.L.A.: Role of sucrose-phosphate synthase in sucrose metabolism in leaves.-Plant Physiol. 99: 1275-1278, 1992.

    Google Scholar 

  • Huber, S.C., Huber, J.L., Campbell, W.M., Redinbough, M.G.: Comparative studies of the light modulation of nitrate reductase and sucrose-phosphate synthase activities in spinach leaves.-Plant Physiol. 100: 706-712, 1992.

    Google Scholar 

  • Idso, S.B.: The long-term response of trees to atmospheric CO2 enrichment.-Global Change Biol. 5: 493-495, 1999.

    Google Scholar 

  • Jach, M.E., Ceulemans, R.: Effects of elevated atmospheric CO2 on phenology, growth and crown structure of Scots pine (Pinus sylvestris) seedlings after two years of exposure in the field.-Tree Physiol. 19: 289-300, 1999.

    Google Scholar 

  • Jach, M.E., Ceulemans, R.: Short-versus long-term effects of elevated CO2 on night-time respiration of needles of Scots pine (Pinus sylvestris L.).-Photosynthetica 38: 57-67, 2000.

    Google Scholar 

  • Jacobs, T.: Why do plants cells divide?-Plant Cell 9: 1021-1029, 1997.

    Google Scholar 

  • Jang, J.C., Sheen, J.: Sugar sensing in higher plants.-Plant Cell 6: 1665-1679, 1994.

    Google Scholar 

  • Janouš, D., Dvořák, V., Opluštilová, M., Kalina, J.: Chamber effects and responses of trees in the experiment using open top chambers.-J. Plant Physiol. 148: 332-338, 1996.

    Google Scholar 

  • Kalina, J., Čajánek, M., Špunda, V., Marek, M.V.: Changes of the primary photosynthetic reactions of Norway spruce under elevated CO2.-In: Mohren, G.M.J., Kramer, K., Sabaté, S. (ed.): Impacts of Global Change on Tree Physiology and Forest Ecosystems. Pp. 59-66. Kluwer Academic Publishers, Dordrecht 1997.

    Google Scholar 

  • Kalina, J., Urban, O., Čajánek, M., Kurasová, I., Špunda, V., Marek, M.V.: Different responses of Norway spruce needles from shaded and exposed crown layers to the prolonged exposure to elevated CO2 studied by various chlorophyll a fluorescence techniques.-Photosynthetica 39: 369-376, 2001.

    Google Scholar 

  • Kellomäki, S., Wang, K.-Y.: Sap flow in Scots pines growing under conditions of year-round carbon dioxide enrichment and temperature elevation.-Plant Cell Environ. 21: 969-981, 1998.

    Google Scholar 

  • Kerstiens, G.: Shade-tolerance as a predictor of responses to elevated CO2 in trees.-Physiol. Plant. 102: 472-480, 1998.

    Google Scholar 

  • Kerstiens, G.: Meta-analysis of the interaction between shade-tolerance, light environment and growth response of woody species to elevated CO2.-Acta oecol. 22: 61-69, 2001.

    Google Scholar 

  • Kinsman, E.A., Lewis, C., Davies, M.S., Young, J.E., Francis, D., Vilhar, B., Ougham, H.J.: Elevated CO2 stimulates cells to divide in grass meristems: a differential effect in two natural populations of Dactylis glomerata.-Plant Cell Environ. 20: 1309-1316, 1997.

    Google Scholar 

  • Koch, K.E.: Carbohydrate-modulated gene expression in plants.-Annu. Rev. Plant Physiol. Plant mol. Biol. 47: 509-540, 1996.

    Google Scholar 

  • Körner, C.: Does global increase of CO2 alter stomatal density?-Flora 181: 253-257, 1988.

    Google Scholar 

  • Kramer, P.J.: Carbon dioxide concentration, photosynthesis, and dry matter production.-BioScience 31: 29-33, 1981.

    Google Scholar 

  • Kubiske, M.E., Pregitzer, K.S.: Ecophysiological responses to simulated canopy gaps of two tree species of contrasting shade tolerance in elevated CO2.-Funct. Ecol. 11: 24-32, 1997.

    Google Scholar 

  • Laisk, A., Oja, V.: Dynamics of Leaf Photosynthesis: Rapid-response Measurements and their Interpretations.-SCIRO Publishing, Collingwood 1998.

    Google Scholar 

  • Lauber, W., Körner, C.: In situ stomatal responses to long-term CO2 enrichment in calcareous grassland plants.-Acta oecol. 18: 221-229, 1997.

    Google Scholar 

  • Lee, H.S.J., Overdieck, D., Jarvis, P.G.: Biomass, growth and carbon allocation.-In: Jarvis, P.G. (ed.): European Forests and Global Change. The Likely Impacts of Rising CO2 and Temperature. Pp. 126-191. Cambridge University Press, Cambridge 1998.

    Google Scholar 

  • Linder, S.: Chlorophyll as an indicator of nitrogen status of coniferous seedlings.-New Zeal. J. Forest Sci. 10: 166-175, 1980.

    Google Scholar 

  • Linder, S.: Foliar analysis for detecting and correcting nutrient imbalances in Norway spruce.-Ecol. Bull. (Copenhagen) 44: 178-190, 1995.

    Google Scholar 

  • Linder, S., Murray, M.: Do elevated CO2 concentrations and nutrients interact?-In: Jarvis, P.G. (ed.): European Forests and Global Change. The Likely Impacts of Rising CO2 and Temperature. Pp. 215-235. Cambridge University Press, Cambridge 1998.

    Google Scholar 

  • Long, S.P., Drake, B.G.: Photosynthetic CO2 assimilation and rising atmospheric CO2 concentrations.-In: Baker, N.R., Thomas, H. (ed.): Crop Photosynthesis: Spatial and Temporal Determinants. Pp. 69-103. Elsevier Science Publishers, Amsterdam 1992.

    Google Scholar 

  • Luo, Y.: Scaling against environmental and biological variability: general principles and a case study.-In: Luo, Y., Mooney, H.A. (ed.): Carbon Dioxide and Environmental Stress. Pp. 309-331. Academic Press, San Diego 1999.

    Google Scholar 

  • Luo, Y., Canadell, J., Mooney, H.A.: Interactive effects of carbon dioxide and environmental stress on plants and ecosystems: a synthesis.-In: Luo, Y., Mooney, H.A. (ed.): Carbon Dioxide and Environmental Stress. Pp. 393-408. Academic Press, San Diego 1999a.

    Google Scholar 

  • Luo, Y., Field, C.B., Mooney, H.A.: Predicting responses of photosynthesis and root fraction to elevated [CO2]a: Interactions among carbon, nitrogen, and growth: theoretical paper.-Plant Cell Environ. 17: 1195-1204, 1994.

    Google Scholar 

  • Luo, Y., Reynolds, J., Wang, Y., Wolfe, D.: A search for predictive understanding of plant responses to elevated [CO2].-Global Change Biol. 5: 143-156, 1999b.

    Google Scholar 

  • Makino, A., Mae, T.: Photosynthesis and plant growth at elevated levels of CO2.-Plant Cell Physiol. 40: 999-1006, 1999.

    Google Scholar 

  • Marek, M.V., Kalina, J., Matoušková, M.: Response of photosynthetic carbon assimilation of Norway spruce exposed to long-term elevation of CO2 concentration.-Photosynthetica 31: 209-220, 1995.

    Google Scholar 

  • Marek, M.V., Šprtová, M., Kalina, J.: The photosynthetic irradiance-response of Norway spruce exposed to a long-term elevation of CO2 concentration.-Photosynthetica 33: 259-268, 1997.

    Google Scholar 

  • Marek, M.V., Šprtová, M., Urban, O., Špunda, V.: Chlorophyll a fluorescence response of Norway spruce needles to the long-term effect of elevated CO2 in relation to their position within the canopy.-Photosynthetica 39: 437-445, 2001.

    Google Scholar 

  • Marek, M.V., Urban, O., Šprtová, M., Pokorný, R., Rosová, Z., Kulhavý, J.: Photosynthetic assimilation of sun versus shade Norway spruce [Picea abies (L.) Karst] needles under long-term impact of elevated CO2 concentration.-Photosynthetica 40: 259-267, 2002.

    Google Scholar 

  • Martin, T. Oswald, O., Graham, I.A.: Arabidopsis seedling growth, storage lipid mobilization, and photosynthetic gene expression are regulated by carbon: nitrogen availability.-Plant Physiol. 128: 472-481, 2002.

    Google Scholar 

  • Medlyn, B.E., Badeck, F.-W., De Pury, D.G.G., Barton, C.V.M., Broadmeadow, M., Ceulemans, R., De Angelis, P., Forstreuter, M., Jach, M.E., Kellomäki, S., Laitat, E., Marek, M., Philippot, S., Rey, A., Strassemeyer, J., Laitinen, K., Liozon, R., Portier, B., Roberntz, P., Wang, K., Jarvis, P.G.: Efects of elevated [CO2] on photosynthesis in European forest species: a meta-analysis of model parameters.-Plant Cell Environ. 22: 1475-1495, 1999.

    Google Scholar 

  • Medlyn, B.E., Barton, C.V.M., Broadmeadow, M.S.J., Ceulemans, R., De Angelis, P., Forstreuter, M., Freeman, M., Jackson, S.B., Kellomäki, S., Laitat, E., Rey, A., Roberntz, P., Sigurdsson, B.D., Strassemeyer, J., Wang, K., Curtis, P.S., Jarvis, P.G.: Stomatal conductance of forest species after long-term exposure to elevated CO2 concentration: a synthesis.-New Phytol. 149: 247-264, 2001.

    Google Scholar 

  • Mortensen, L.M.: Growth responses of some greenhouse plants to environment. VIII. Effect of CO2 on photosynthesis and growth of Norway spruce.-Meld. norg. Landbrukshøgsk. 62(10): 1-13, 1983.

    Google Scholar 

  • Mousseau, M., Enoch, H.Z.: Carbon dioxide enrichment reduces shoot growth in sweet chestnut seedlings (Castanea sativa Mill.).-Plant Cell Environ. 12: 927-934, 1989.

    Google Scholar 

  • Opluštilová, M., Dvořák, V.: Growth processes of Norway spruce in elevated CO2 concentration.-In: Mohren, G.M.J., Kramer, K., Sabaté, S. (ed.): Impacts of Global Change on Tree Physiology and Forest Ecosystems. Pp. 53-58. Kluwer Academic Publishers, Dordrecht 1997.

    Google Scholar 

  • Overdieck, D., Kellomäki, S., Wang, K.Y.: Do the effects of temperature and CO2 interact?-In: Jarvis, P.G. (ed.): European Forests and Global Change. The Likely Impacts of Rising CO2 and Temperature. Pp. 236-273. Cambridge University Press, Cambridge 1998.

    Google Scholar 

  • Paoletti, E., Gellini, R.: Stomatal density variation in beech and holm oak leaves collected over the last 200 years.-Acta oecol. 14: 173-178, 1993.

    Google Scholar 

  • Paoletti, E., Nourrisson, G., Garrec, J.P., Raschi, A.: Modifications of the leaf surface structures of Quercus ilex L. in open, naturally CO2-enriched environments.-Plant Cell Environ. 21: 1071-1075, 1998.

    Google Scholar 

  • Pataki, D.E., Oren, R., Tissue, D.T.: Elevated carbon dioxide does not affect average canopy stomatal conductance of Pinus taeda L.-Oecologia 117: 47-52, 1998.

    Google Scholar 

  • Pearcy, R.W., Björkman, O.: Physiological effects.-In: Lemon, E.R. (ed.): CO2 and Plants. Pp. 65-105. American Association for the Advancement of Science, Washington 1983.

    Google Scholar 

  • Peterson, A.G., Ball, J.T. et al.: The photosynthesis leaf nitrogen relationship at ambient and elevated carbon dioxide: a meta-analysis.-Global Change Biol. 5: 331-346, 1999.

    Google Scholar 

  • Pokorný, R., Šalanská, P., Janouš, D.: Growth and transpiration of Norway spruce trees under atmosphere with elevated CO2 concentration.-Ekológia (Bratislava) 20: 14-28, 2001.

    Google Scholar 

  • Poorter. H., Pérez-Soba, M.: The growth response of plants to elevated CO2 under non-optimal environmental conditions.-Oecologia 129: 1-20, 2001.

    Google Scholar 

  • Porter, M.A., Grodzinski, B.: Acclimation to high CO2 in bean. Carbonic anhydrase and ribulose bisphosphate carboxylase.-Plant Physiol. 74: 413-416, 1984.

    Google Scholar 

  • Portis, J.R., Jr.: Rubisco activase.-Biochim. biophys. Acta 1015: 15-28, 1990.

    Google Scholar 

  • Pospíšilová, J., Čatský, J.: Development of water stress under increased atmospheric CO2 concentration.-Photosynthetica 42: 1-24, 1999.

    Google Scholar 

  • Pritchard, S.G., Rogers, H.H., Prior, S.A., Peterson, C.M.: Elevated CO2 and plant structure: a review.-Global Change Biol. 5: 807-837, 1999.

    Google Scholar 

  • Priwitzer, T., Urban, O., Šprtová, M., Marek, M.V.: Chloroplastic carbon dioxide concentration of Norway spruce (Picea abies [L.] Karst.) needles relates to the position within the crown.-Photosynthetica 35: 561-571, 1998.

    Google Scholar 

  • Rogers, H.H., Runion, G.B., Prior, S.A., Torbert, H.A.: Response of plants to elevated atmospheric CO2: root growth, mineral nutrition, and soil carbon.-In: Luo, Y., Mooney, H.A. (ed.): Carbon Dioxide and Environmental Stress. Pp. 215-234. Academic Press, San Diego 1999.

    Google Scholar 

  • Ryan, M.G.: Effects of climate change on plant respiration.-Ecol. Appl. 1: 157-167, 1991.

    Google Scholar 

  • Sage, R.F.: A model describing the regulation of ribulose-1,5-bisphosphate carboxylase, electron transport, and triose phosphate use in response to light intensity and CO2 in C3 plants.-Plant Physiol. 94: 1728-1734, 1990.

    Google Scholar 

  • Sage, R.F.: Acclimation of photosynthesis to increasing CO2: the gas exchange perspective.-Photosynth. Res. 39: 351-368, 1994.

    Google Scholar 

  • Sage, R.F., Reid, C.D.: Photosynthetic response mechanisms to environmental change in C3 plants.-In: Wilkinson, R.E. (ed.): Plant-Environment Interactions. Pp. 413-499. M. Dekker, New York-Basel-Hong Kong 1994.

    Google Scholar 

  • Sage, R.F., Sharkey, T.D., Seemann, J.R.: Acclimation of photosynthesis to elevated CO2 in five C3 species.-Plant Physiol. 89: 590-596, 1989.

    Google Scholar 

  • Šantrůček, J., Sage, R.F.: Acclimation of stomatal conductance to a CO2-enriched atmosphere and elevated temperature in Chenopodium album.-Aust. J. Plant Physiol. 23: 467-478, 1996.

    Google Scholar 

  • Saralabai, V.C., Vivekandan, M., Babu, R.S.: Plant responses to high CO2 concentration in the atmosphere.-Photosynthetica 33: 7-37, 1997.

    Google Scholar 

  • Sasek, T.W., DeLucia, E.H., Strain, B.R.: Reversibility of photosynthetic inhibition in cotton after long-term exposure to elevated CO2 concentrations.-Plant Physiol. 78: 619-622, 1985.

    Google Scholar 

  • Sasek, T.W., Strain, B.R.: Effects of carbon dioxide enrichment on the expression and size of Kudzu (Pueraria lobata) leaves.-Weed Sci. 37: 23-28, 1988.

    Google Scholar 

  • Scarascia-Mugnozza, G., De Angelis, P.: Is water used more efficiently?-In: Jarvis, P.G. (ed.): European Forests and Global Change. The Likely Impacts of Rising CO2 and Temperature. Pp. 192-214. Cambridge University Press, Cambridge 1998.

    Google Scholar 

  • Scholes, R.J., Noble, I.R.: Climate change. Storing carbon on land.-Science 294: 1012-1013, 2001.

    Google Scholar 

  • Sheen, J.: Feedback control of gene expression.-Photosynth. Res. 39: 427-438, 1994.

    Google Scholar 

  • Sicher, R.C., Bunce, J.A.: Relationship of photosynthetic acclimation to changes of Rubisco activity in field-grown winter wheat and barley during growth in elevated carbon dioxide.-Photosynth. Res. 52: 27-38, 1997.

    Google Scholar 

  • Sionit, N., Strain, B.R., Hellmers, H., Riechers, G.H., Jaeger, C.H.: Long-term atmospheric CO2 enrichment affects the growth and development of Liquidambar styraciflua and Pinus taeda seedlings.-Can. J. Forest Res. 15: 468-471, 1985.

    Google Scholar 

  • Soni, R., Carmichael, J.P., Shah, Z.H., Marray, J.A.H.: A family of cyclin D homologues from plants differently controlled by growth regulators and containing the conserved retioblastome protein interaction motif.-Plant Cell 7: 85-103, 1995.

    Google Scholar 

  • Spollen, W.G., Sharpe, R.E.: Spatial distribution of turgor and root growth at low water potentials.-Plant Physiol. 96: 438-443, 1991.

    Google Scholar 

  • Špunda, V., Kalina, J., Čajánek, M., Pavlíčková, H., Marek, M.V.: Long-term exposure of Norway spruce to elevated CO2 concentration induces changes in photosystem II mimicking an adaptation to increased irradiance.-J. Plant Physiol. 152: 413-419, 1998.

    Google Scholar 

  • Stitt, M.: Rising CO2 levels and their potential significance for carbon flow in photosynthetic cells.-Plant Cell Environ. 14: 741-762, 1991.

    Google Scholar 

  • Stitt, M., Krapp, A.: The interaction between elevated carbon dioxide and nitrogen nutrition: the physiological and molecular background.-Plant Cell Environ. 22: 583-621, 1999.

    Google Scholar 

  • Stitt, M., Quick, W.P.: Photosynthetic carbon partitioning: its regulation and possibilities for manipulation.-Physiol. Plant. 77: 633-641, 1989.

    Google Scholar 

  • Stitt, M., Schulze, E.D.: Does Rubisco control the rate of photosynthesis and plant growth? An exercise in molecular ecophysiology.-Plant Cell Environ. 17: 465-487, 1994.

    Google Scholar 

  • Strain, B.R., Thomas, R.B.: Anticipated effects of elevated CO2 and climate change on plants from Mediterranean-type ecosystems utilizing results of studies in other ecosystems.-In: Moreno, J.M., Oechel, W.W. (ed.): Anticipated Effects of a Changing Global Environment on Mediterranean-Type Ecosystems. Pp. 121-139. Springer-Verlag, New York 1995.

    Google Scholar 

  • Taylor, G., Ranasinghe, S., Bosac, C., Gardner, S.D.L., Ferris, R.: Elevated CO2 and plant growth: cellular mechanisms and responses of whole plants.-J. exp. Bot. 45: 1761-1774, 1994.

    Google Scholar 

  • Thomas, R.B., Griffin, K.L.: Direct and indirect effects of atmospheric carbon dioxide enrichment on leaf respiration of Glycine max (L.). Merr.-Plant Physiol. 104: 355-361, 1994.

    Google Scholar 

  • Tissue, D.T., Griffin, K.L., Thomas, R.B., Strain, B.R.: Effects of low and elevated CO2 on C3 and C4 annuals. II. Photosynthesis and leaf biochemistry.-Oecologia 101: 21-28, 1995.

    Google Scholar 

  • Tissue, D.T., Griffin, K.L., Turnbull, M.H., Whitehead, D.: Canopy position and needle age affect photosynthetic response in field-grown Pinus radiata after five years of exposure to elevated carbon dioxide partial pressure.-Tree Physiol. 21: 915-923, 2001.

    Google Scholar 

  • Tissue, D.T., Oechel, W.C.: Response of Eriophorum vaginatum to elevated CO2 and temperature in the Alaskan tussock tundra.-Ecology 68: 401-410, 1987.

    Google Scholar 

  • Tognetti, R., Johnson, J.D., Michelozzi, M., Raschi, A.: Response of foliar metabolism in mature trees of Quercus pubescens and Quercus ilex to long-term elevated CO2.-Environ. exp. Bot. 39: 233-245, 1998.

    Google Scholar 

  • Tognetti, R., Longobucco, A., Miglietta, F., Raschi, A.: Water relations, stomatal response and transpiration of Quercus pubescens trees during summer in a Mediterranean carbon dioxide spring.-Tree Physiol. 19: 261-270, 1999a.

    Google Scholar 

  • Tognetti, R., Longobucco, A., Raschi, A.: Seasonal embolism and xylem vulnerability in deciduous and evergreen Mediterranean trees influenced by proximity to a carbon dioxide spring.-Tree Physiol. 19: 271-277, 1999b.

    Google Scholar 

  • Tolley, L.C., Strain, B.R.: Effects of CO2 enrichment and water stress on gas exchange of Liquidambar styraciflua and Pinus taeda seedlings grown under different irradiance levels.-Oecologia 65: 166-172, 1985.

    Google Scholar 

  • Urban, O., Marek, M.V.: Seasonal changes of selected parameters of CO2 fixation biochemistry of Norway spruce under the long-term impact of elevated CO2.-Photosynthetica 36: 533-545, 1999.

    Google Scholar 

  • Urban, O., Pokorný, R., Kalina, J., Marek, M.V.: Control mechanisms of photosynthetic capacity under elevated CO2: evidence from three experiments with Norway spruce trees.-Photosynthetica 41: 69-75, 2003.

    Google Scholar 

  • van Oosten, J.-J., Besford, R.T.: Some relationships between the gas exchange, biochemistry and molecular biology of photosynthesis during leaf development of tomato plants after transfer to different carbon dioxide concentrations.-Plant Cell Environ. 18: 1253-1266, 1995.

    Google Scholar 

  • Vu, J.C.V., Allen, L.H., Jr., Bowes, G.: Leaf ultrastructure, carbohydrates and protein of soybeans grown under CO2 enrichment.-Environ. exp. Bot. 29: 141-147, 1989.

    Google Scholar 

  • Wang, Y.P., Rey, A., Jarvis, P.G.: Carbon balance of young birch trees grown in ambient and elevated atmospheric CO2 concentrations.-Global Change Biol. 4: 797-807, 1998.

    Google Scholar 

  • Watson, R.T., Noble, I.R., Bolin, B., Ravindranath, N.H., Verardo, D.J., Dokken, D.J.: Land use, land-use change, and forestry. A special report of the IPCC.-Cambridge University Press, Cambridge 2000.

    Google Scholar 

  • Webber, A.N., Nie, G.-Y., Long, S.P.: Acclimation of photosynthetic proteins to rising atmospheric CO2.-Photosynth. Res. 39: 413-425, 1994.

    Google Scholar 

  • Wingler, A., Lea, P.J., Quick, W.P., Leegood, R.C.: Photorespiration: metabolic pathways and their role in stress protection.-Philos. Trans. roy. Soc. London B 1402: 1517-1529, 2000.

    Google Scholar 

  • Wolfe, D.W., Gifford, R.M., Hilbert, D., Luo, Y.: Integration of photosynthetic acclimation to CO2 at the whole-plant level.-Global Change Biol. 4: 879-893, 1998.

    Google Scholar 

  • Woodward, F.I.: Stomatal numbers are sensitive to increases in CO2 from pre-industrial levels.-Nature 327: 617-618, 1987.

    Google Scholar 

  • Woodward, F.I., Bazzaz, F.A.: The responses of stomatal density to CO2 partial pressure.-J. exp. Bot. 39: 1771-1781, 1988.

    Google Scholar 

  • Wullschleger, S.D., Norby, R.J., Hendrix, D.L.: Carbon exchange rates, chlorophyll content, and carbohydrate status of two forest tree species exposed to carbon dioxide enrichment.-Tree Physiol. 10: 21-31, 1992.

    Google Scholar 

  • Yordanov, I., Velikova, V., Tsonev, T.: Plant responses to drought, acclimation, and stress tolerance.-Photosynthetica 38: 171-186, 2000.

    Google Scholar 

  • Zerihun, A., Bassirirad, H.: Interspecies variation in nitrogen uptake kinetic responses of temperate forest species to elevated CO2: Potential causes and consequences.-Global Change Biol. 7: 211-222, 2001.

    Google Scholar 

  • Zhu, J., Talbott, L.D., Jin, X., Zeiger, E.: The stomatal response to CO2 is linked to changes in guard cell zeaxanthin.-Plant Cell Environ. 21: 813-820, 1998.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to O. Urban.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Urban, O. Physiological Impacts of Elevated CO2 Concentration Ranging from Molecular to Whole Plant Responses. Photosynthetica 41, 9–20 (2003). https://doi.org/10.1023/A:1025891825050

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1025891825050

Navigation