, Volume 27, Issue 5, pp 465-475

Genomic Imprinting and Audiogenic Seizures in Mice

Rent the article at a discount

Rent now

* Final gross prices may vary according to local VAT.

Get Access

Abstract

Audiogenic seizure (AGS) susceptibility in mice is a multifactorial behavioral disorder that involves severe generalized convulsions in response to loud, high-frequency sound. The inheritance of AGS susceptibility was examined in crosses between AGS-susceptible DBA/2J (D2) mice and epilepsy-prone (EP) mice. The EP mice were selected for high AGS susceptibility in a BALB/c-derived line. The AGS phenotype was similar in the EP and D2 mice at 30 days of age. The frequency of generalized clonic–tonic AGS was high in both the D2 and the EP mice (53 and 83%, respectively) but was low in the reciprocal EPD2F1 and D2EPF1 hybrids (14 and 19%, respectively). In the backcross to the EP parent, no significant associations were found between AGS susceptibility and microsatellite markers linked to Asp1 or Asp2, AGS genes located on Chromosomes 12 and 4, respectively. Significant associations were found for markers linked to Asp3, which is located in the proximal region of Chromosome 7. The influence of Asp3 on AGS susceptibility was seen in the EP × EPD2F1 backcross but not in the reciprocal EPD2F1 × EP backcross, suggesting that Asp3 expression is influenced by genomic imprinting. A model is proposed where genomic imprinting represses the maternal Asp3 allele, providing an influence largely from the paternal allele.