Skip to main content
Log in

Phosphatase activity in the sea

  • Published:
Hydrobiologia Aims and scope Submit manuscript

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

References

  • Ammerman, J. W., 1991. Role of ecto–phosphohydrolases in phosphorus regeneration in estuarine and coastal ecosystems. In Chróst, R. J. (ed.), Microbial Enzymes in Aquatic Environments. Springer Verlag, Berlin: 165–186.

    Google Scholar 

  • Ammerman, J.W. & F. Azam, 1991. Bacterial 5?–nucleotidase activity in estuarine and coastal marine waters; characterization of enzyme activity. Limnol. Oceanogr. 36: 1427–1436.

    Google Scholar 

  • Ammerman, J. W. & W. B. Glover, 2000. Continuous underway measurement of microbial ectoenzyme activities in aquatic ecosystems. Mar. Ecol. Prog. Ser. 201: 1–12.

    Google Scholar 

  • Amy, P. S., B. A. Caldwell, A. H. Soeldner, R. Y. Morita & L. J. Albright, 1987. Microbial activity and ultrastructure of mineralbased marine snow from Howe Sound, British Columbia. Can. J. Fish. aquat. Sci. 44: 1135–1142.

    Google Scholar 

  • Argast, M. & W. Boos, 1980. Co–regulation in Escherichia coli of a novel transport system for sn–glycerol–3–phosphate and outer membrane protein Ic (e,E) with alkaline phosphatase and phosphate binding protein. J. Bact. 143: 142–150.

    Google Scholar 

  • Azam, F., T. Fenchel, J. G. Field, J. S. Gray, L.–A. Meyer–Reil & F. Thingstad, 1983. The ecological role of water–column microbes in the sea. Mar. Ecol. Prog. Ser. 10: 257–263.

    Google Scholar 

  • Bañeras, L., J. Rodriguez–Gonzales & L. J. Garcia–Gil, 1999. Contribution of photosynthetic sulfur bacteria to the alkaline phosphatase activity in anoxic aquatic ecosystems. Aquat. Microb. Ecol. 18: 15–22.

    Google Scholar 

  • Benitez–Nelson, C. R. & K. O. Buesseler, 1999. Variability of inorganic and organic phosphorus turnover rates in the coastal ocean. Nature 398: 502–505.

    Google Scholar 

  • Benitez–Nelson, C. R. & D. M. Karl, 2002. Phosphorus cycling in the North Pacific subtropical gyre using cosmogenic 32P and 33P. Limnol. Oceanogr. 47: 762–770.

    Google Scholar 

  • Boavida, M. J., 1990. Natural plankton phosphatases and the recycling of phosphorus. Verh. int. Ver. Limnol. 24: 258–259.

    Google Scholar 

  • Carlsson, P. & E. Graneli, 1993. Availability of humic bound nitrogen for coastal phytoplankton. Estuar. coast. shelf Sci. 36: 433–447.

    Google Scholar 

  • Cary, S. C., W. Warren, E. Anderson & S. J. Giovannoni, 1993. Identification and localization of bacterial endosymbionts in hydrothermal vent taxa with symbiont specific polymerase chain reaction amplification and in situ hybridization techniques. Mol. Mar. Biol. Biotechnol. 2: 51–62.

    Google Scholar 

  • Christian, J. R. & D. M. Karl, 1995. Measuring bacterial exoenzyme activities in marine waters using mercuric chloride as a preservative and a control. Mar. Ecol. Prog. Ser. 123: 217–224.

    Google Scholar 

  • Chróst, R. J. 1991. Environmental control of the synthesis and activity of aquatic microbial ectoenzymes. In Chróst, R. J. (ed.), Microbial Enzymes in Aquatic Environments. Springer Verlag, Berlin: 29–59.

    Google Scholar 

  • Chróst, R. J. & H. J. Krambeck, 1986. Fluorescence correction for measurements of enzyme activity in natural waters using methylumbelliferyl substrates. Arch. Hydrobiol. 106: 79–90.

    Google Scholar 

  • Chróst, R. J. & J. Overbeck, 1987. Kinetics of alkaline phosphatase activity and phosphorus availability for phytoplankton and bacterioplankton in lake Plußsee (north German eutrophic lake). Microb. Ecol. 13: 229–248.

    Google Scholar 

  • Coolen, M. J. L. & J. Overmann, 2000. Functional exoenzymes as indicators of metabolically active bacteria in 124,000–year–old sapropel layers of the eastern Mediterranean Sea. Appl. Environ. Microbiol. 66: 2589–2598.

    Google Scholar 

  • Copin–Montegut, C. & G. Copin–Montegut, 1983. Stoichiometry of carbon, nitrogen, and phosphorus in marine particulate matter. Deep Sea Res. 30: 31–46.

    Google Scholar 

  • Cotner, J. B., J. W. Ammerman, E. R. Peele & E. Bentzen, 1997. Phosphorus–limited bacterioplankton growth in the Sargasso Sea. Aquat. Microb. Ecol. 13: 141–149.

    Google Scholar 

  • Davies, A. G. & M. A. Smith, 1988. Alkaline phosphatase activity in the western English Channel. J. mar. biol. Ass. U.K. 68: 239–260.

    Google Scholar 

  • De Souza, M. J., S. Nair, J. J. David & D. Chandramohan, 1996. Crude oil degradation by phosphate–solubilizing bacteria. J. mar. Biotechnol. 4: 91–95.

    Google Scholar 

  • Dyhrman, S. T. & B. P. Palenik, 1997. The identification and purification of a cell–surface alkaline phosphatase from the dino–flagellate Prorocentrum minimum (Dinophyceae). J. Phycol. 33: 602–612.

    Google Scholar 

  • Dyhrman, S. T. & B. Palenik, 2001. A single–cell immunoassay for phosphate stress in the dinoflagellate Prorocentrum minimum (Dinophyceae). J. Phycol. 37: 400–410.

    Google Scholar 

  • Espeland, E. M. & R. G. Wetzel, 2001. Complexation, stabilization, and UV photolysis of extracellular and surface–bound glucosidase and alkaline phosphatase: Implications for biofilm microbiota. Microb. Ecol. 42: 572–583.

    Google Scholar 

  • Gambin, F., G. Boge & D. Jamet, 1999. Alkaline phosphatase in a littoral Mediterranean marine ecosystem: role of the main plankton size classes. Mar. Environ. Res. 47: 441–456.

    Google Scholar 

  • Garde, K. & K. Gustavson, 1999. The impact of UV–B radiation on alkaline phosphatase activity in phosphorus–depleted marine ecosystems. J. exp. mar. Biol. Ecol. 238: 93–105.

    Google Scholar 

  • Gauthier M. J., G. N. Flatau & R. L Clément, 1990. Influence of phosphate ions and alkaline phosphatase activity of cells on survival of Escherichia coli in sea water. Microb. Ecol. 20: 245–251.

    Google Scholar 

  • Gonzalez–Gil, S., B. A. Keafer, R. V. M. Jovine, A. Aguilera, Songhui Lu & D. M. Anderson, 1998. Detection and quantification of alkaline phosphatase in single cells of phosphorus–starved marine phytoplankton. Mar. Ecol. Prog. Ser. 164: 21–35.

    Google Scholar 

  • Hauksson, J. B., O. S. Andresson & B. Asgeirsson, 2000. Heatlabile bacterial alkaline phosphatase from a marine Vibrio. Enzyme Microb. Technol. 27: 66–73.

    Google Scholar 

  • Heath, R. T. & A. C. Edinger, 1990. Uptake of 32P–phosphoryl from glucose–6–phosphate by plankton in an acid bog lake. Verh. int. Ver. Limnol. 24: 210–213.

    Google Scholar 

  • Helmke, E. & H. Weyland, 1995. Bacteria in sea ice and underlying water of the eastern Weddell Sea in midwinter. Mar. Ecol. Prog. Ser. 117: 269–287.

    Google Scholar 

  • Hernández, I., J. R. Andria, M. Christmas & B. A. Whitton, 1999. Testing the allometric scaling of alkaline phosphatase activity to surface/volume ratio in benthic marine macrophytes. J. exp. mar. Biol. Ecol. 241: 1–14.

    Google Scholar 

  • Hoppe, H.–G., 1983. Significance of exoenzymatic activities in the ecology of brackish water: measurements by means of methylumbelliferyl–substrates. Mar. Ecol. Prog. Ser. 11: 299–308.

    Google Scholar 

  • Hoppe, H.–G., 1986. Relations between bacterial extracellular enzyme activity and heterotrophic substrate uptake in a brackish water environment. GERBAM–Deuxième Colloque de Bactériology marine–CNRS, IFREMER; Actes de Colloques 3: 119–128.

    Google Scholar 

  • Hoppe, H.–G., K. Gocke & F. Alcântara, 1996. Shifts between autotrophic and heterotrophic processes in a tidal lagoon (Ria de Aveiro, Portugal). Arch. Hydrobiol. Spec. Issues Adv. Limnol. 48: 39–52.

    Google Scholar 

  • Hoppe, H.–G. & S. Ullrich, 1999. Profiles of ectoenzymes in the Indian Ocean: phenomena of phosphatase activity in the mesopelagic zone. Aquat. Microb. Ecol. 19: 129–138.

    Google Scholar 

  • Huang, Bangqin & Huasheng Hong, 1999. Alkaline phosphatase activity and utilization of dissolved organic phosphorus by algae in subtropical coastal waters. Mar. Pollut. Bull. 39: 205–211.

    Google Scholar 

  • Huang, Bangqin, Shiyu Huang, Yan Weng & Huasheng Hong, 1999. Effect of dissolved phosphorus on alkaline phosphatase activity in marine microalgae. Acta Oceanol. Sin./Haiyang Xuebao 21: 55–60.

    Google Scholar 

  • Huber, A. L. & K. S. Hamel, 1985. Phosphatase activities in relation to phosphorus nutrition in Nodularia spumigena (Cyanobacteriaceae). 2. Laboratory studies. Hydrobiologia 123: 81–88.

    Google Scholar 

  • Istvanovics, V., K. Pettersson & D. Pierson, 1990. Partitioning of phosphate uptake between different size groups of planktonic microorganisms in Lake Erken. Verh. int. Ver. Limnol. 24: 231–235.

    Google Scholar 

  • Ivanova, E. P., V. V. Mikhajlov, E. Yu. Plisova, L. A. Balabanova, V. I. Svetashev, M. V. Vysotskij, V. I. Stepanenko & V. A. Rasskazov, 1994. Characteristics of the strain of marine bacterium Deleya marina associated with the mussel Crenomytilus grayanus producing highly active alkaline phosphatase. Biol. Morya–Mar. Biol. 20: 340–345.

    Google Scholar 

  • Jochem, F. J., 2000. Probing the physiological state of phytoplankton at the single–cell level. Sci. Mar. (Barc.) 64: 183–195.

    Google Scholar 

  • Kim, S.–J. & H.–G. Hoppe, 1986. Microbial extracellular enzyme detection on agar–plates by means of fluorogenic 199 methylumbelliferyl–substrates. GERBAM–Deuxième Colloque de Bactériology marine–CNRS, IFREMER; Actes de Colloques 3: 175–183.

    Google Scholar 

  • Kobori, H. & N. Taga, 1979. Occurrence and distribution of phosphatase in neretic and oceanic sediments. Deep–Sea Res. 26: 799–808.

    Google Scholar 

  • Kobori, H., N. Taga & U. Simidu, 1979. Properties and generic composition of phosphatase–producing bacteria in coastal and oceanic seawater. Bull. Jap. Soc. Sci. Fish. 45: 1429–1433.

    Google Scholar 

  • Kobori, H., C. W. Sullivan & H. Shizuya, 1984. Heat–labile alkaline phosphatase from Antarctic bacteria: Rapid 5′ end–labelling of nucleic acids}. Proc. natl. Acad. Sci. U.S.A. 81: 6691–6695.

    Google Scholar 

  • Köster, M., S. Dahlke & L.–A. Meyer–Reil, 1997. Microbiological studies along a gradient of eutrophication in a shallow coastal inlet in the Southern Baltic Sea (Nordrügensche Bodden). Mar. Ecol. Prog. Ser. 152: 27–39.

    Google Scholar 

  • Koike, I. & T. Nagata, 1998. High potential activity of extracellular alkaline phosphatase in deep waters of the central Pacific. Deep–Sea Res. II, 44: 2283–2294.

    Google Scholar 

  • Krom, M. D., N. Kress & S. Brenner, 1991. Phosphorus limitation of primary production in the eastern Mediterranean Sea. Limnol. Oceanogr. 36: 424–432.

    Google Scholar 

  • Kwag, N.–T., J.–H. Son, J.–S. Lee & T.–Y. Ahn, 1995. Phosphatase activity in Cheonho reservoir. Korrean J. Microbiol. 33: 267–272.

    Google Scholar 

  • Labry, C., A. Herbland & D. Delmas, 2002. The role of phosphorus on planktonic production of the Gironde plume waters in the Bay of Biscay J. Plankton Res. 24: 97–117.

    Google Scholar 

  • Lan, W–.G., M.–K. Wong, N. Chen & Y.–M. Sin, 1995. Effect of combined copper, zinc, chromium and selenium by orthogonal array design on alkaline phosphatase activity in liver of the red sea beam, Chrysophrys major. Aquaculture 131: 219–230.

    Google Scholar 

  • Li Tie, Zhili Shi, Jun Li & Jinliang Zhang, 2000. Effects of nutrients on some biochemical constituents and properties of Skeletonema costatum and Nitzschia closterium. Oceanol. Limnol. Sin./Haiyang Yu Huzhao 31: 239–245.

    Google Scholar 

  • Li, H., M. J. W. Veldhuis & A. F. Post, 1998. Alkaline phosphatase activities among planktonic communities in the northern Red Sea. Mar. Ecol. Prog. Ser. 173: 107–115

    Google Scholar 

  • Long, R. A., L. B. Fandino, G. F. Steward, P. Del Negro, P. Ramani, B. Cataletto, C. Welker, A. Puddu, S. Fonda & F. Azam, 1998. Microbial response to mucilage in the Gulf of Trieste. Eos (Suppl.), Transactions, American Geographical Union, Vol. 79, No. 1, poster abstract No. OS22A–5.

  • Manafi, M.,W. Kneifel & S. Bascomb, 1991. Fluorogenic and chromatogenic substrates used in bacterial diagnostics. Microbiolog. Rev. 55: 335–348.

    Google Scholar 

  • Martinez, J. & F. Azam, 1993. Periplasmic aminopeptidase and alkaline phosphatase activities in a marine bacterium: implications for substrate processing in the sea. Mar. Ecol. Prog. Ser. 93: 89–97.

    Google Scholar 

  • Martinez, J., D. C. Smith, G. F. Steward & F. Azam, 1996. Variability in ectohydrolytic enzyme activities of pelagic marine bacteria and its significance for substrate processing in the sea. Aquat. Microb. Ecol. 10: 223–230.

    Google Scholar 

  • Middelboe, M., M. Søndergaard, Y. Letarte & N. H. Borch, 1995. Attached and free–living bacteria: production and polymer hydrolysis during a Diatom bloom. Microb. Ecol. 29: 21–248.

    Google Scholar 

  • Middelboe, M., N. O. G. Jørgensen & N. Kroer, 1996. Effects of viruses on nutrient turnover and growth efficiency of noninfected marine bacterioplankton. Appl. Environ. Microbiol. 62: 1991–1997.

    Google Scholar 

  • Myklestad, S. & E. Sakshaug, 1983. Alkaline phosphatase activity of Skeletonema costatum populations in the Trondheimsfjord. J. Plankton Res. 5: 557–564.

    Google Scholar 

  • Nagata, T. & D. L. Kirchman, 1992. Release of macromolecular organic complexes by heterotrophic marine flagellates. Mar. Ecol. Prog. Ser. 83: 233–240.

    Google Scholar 

  • Nausch, M., 1997. Microbial activities on Trichodesmium colonies. Mar. Ecol. Prog. Ser. 141: 173–181.

    Google Scholar 

  • Nausch, M., 1998. Alkaline phosphatase activities and the relationship to inorganic phosphate in the Pomeranian Bight (southern Baltic Sea). Aquat. Microb. Ecol. 16: 87–94.

    Google Scholar 

  • Nausch, M., F. Pollehne & E. Kerstan, 1998. Extracellular enzyme activities in relation to hydrodynamics in the Pomeranian Bight (Southern Baltic Sea). Micrb. Ecol. 36: 251–258.

    Google Scholar 

  • Nicolopoulou, A., K. Zoumbou, N. Papageorgacopoulou & M. Papapetropoulou, 1994. Metabolic and compositional changes in Escherichia coli cells starved in seawater. Microbiol. Res. 149: 343–350.

    Google Scholar 

  • Obst, U., 1995. Enzymatische Tests für die Wasseranalytik. R. Oldenbourg Verlag, München, Wien: 151 pp.

  • Overbeck, J., 1991. Early studies on ecto–and extracellular enzymes in aquatic environments. In Chróst, R. J. (ed), Microbial enzymes in aquatic environments. Springer Verlag, Berlin: 1–5.

    Google Scholar 

  • Paasche, E. & S. R. Erga, 1988. Phosphorus and nitrogen limitation in the Oslofjord (Norway). Sarsia 73: 229–243.

    Google Scholar 

  • Paerl, H. W. & S. M. Merkel, 1982. Differential phosphorus assimilation in attached vs. unattached microorganisms. Arch. Hydrobiol. 93: 125–134.

    Google Scholar 

  • Pantoja, S. & C. Lee, 1994. Cell–surface oxidation of amino acids in seawater. Limnol.Oceanogr. 39: 1718–1726.

    Google Scholar 

  • Perry, M. J., 1972. Alkaline phosphatase activity in subtropical Central North Pacific waters using a sensitive fluorometric method. Mar. Biol. 15: 113–119.

    Google Scholar 

  • Pettersson, K., 1980. Alkaline phosphatase activity and algal surplus phosphorus as phosphorus–deficiency indicators in Lake Erken. Arch. Hydrobiol. 89: 54–87.

    Google Scholar 

  • Priest, F. G., 1984. Extracellular enzymes. Aspects of microbiology 9. Van Nostrand Reinhold Co. Ltd, Wokingham, U.K.: 79 pp.

    Google Scholar 

  • Rivkin, R. B. & M. R. Anderson, 1997. Inorganic nutrient limitation of oceanic bacterioplankton. Limnol. Oceanogr. 42: 730–740.

    Google Scholar 

  • Rivkin, R. B. & E. Swift, 1980. Characterization of alkaline phosphatase and organic phosphorus utilization in the oceanic dinoflagellate Pyrocystis noctiluca. Mar. Biol. 61: 1–8.

    Google Scholar 

  • Sabil, N., A. Cherqui, D. Tagliapietra & M. A. Coletti–Previero, 1994. Immobilized enzymatic activity in the Venice Lagoon sediment. Water Res. 28: 77–84.

    Google Scholar 

  • Sakshaug, E., E. Graneli, M. Elbrächter & H. Kayser, 1984. Chemical composition and alkaline phosphatase activity of nutrientsaturated and P–deficient cells of four marine dinoflagellates. J. exp. mar. Biol. Ecol. 77: 241–254.

    Google Scholar 

  • Sala, M. M., M. Karner, L. Arin & C. Marrase, 2001. Measurement of ectoenzyme activities as an indication of inorganic nutrient imbalance in microbial communities. Aquat. Microb. Ecol. 23: 301–311.

    Google Scholar 

  • Saliot, A., G. Cauwet, G. Cahet, D. Mazaudier & R. Daumas, 1996. Microbial activities in the Lena River Delta and Laptev Sea. Mar. Chem. 53: 247–254.

    Google Scholar 

  • Santavy D. L.,W. L. J effry, R. A. Anyder, J. Campbell, P. Malouin & L. Cole, 1994. Microbial community dynamics in the mucus of healthy and stressed corals hosts. Bull. mar. Sci. 54: 1077–1087.

    Google Scholar 

  • Sawyer, T. K., T. S. Nerad, P. M. Daggett & S. M. Bodammer, 1987. Potentially pathogenic protozoa in sediments from oceanic sewage–disposal sites. In Capuzzo J. M. & D. R. Kester (eds), Oceanic Processes in Marine Pollution, Vol.1: Biological Processes and Wastes in the Ocean: 183–194.

  • Scanlan, D. J. & W. H. Wilson, 1999. Application of molecular techniques to addressing the role of P as a key effector in marine ecosystems. Hydrobiologia 401: 149–175.

    Google Scholar 

  • Shi, L., W. W. Carmichael & P. J. Kennelly, 1999. Cyanobacterial ppp family protein phosphatases possess multifunctional capabilities and are resistant to microcystin–LR. J. Biol. Chem. 274: 10039–10046.

    Google Scholar 

  • Singh, S. A. M. & R. H. Green, 1986. Naturally occurring activity variation of an alkaline phosphatase isoenzyme associated with physiological fitness in an intertidal population of Macoma baltica. Can. J. Genet. Cytol. 28: 282–285.

    Google Scholar 

  • Siuda, W. & H. Güde, 1994. The role of phosphorus and organic carbon compounds in regulation of alkaline phosphatase activity and P regeneration processes in eutrophic lakes. Pol. Arch. Hydrobiol. 41: 171–187.

    Google Scholar 

  • Smith, D. C., M. Simon, A. L. Alldredge & F. Azam, 1992. Intense hydrolytic enzyme activity on marine aggregates and implications for rapid particle dissolution. Nature 359: 139–142.

    Google Scholar 

  • Sobecky, P. A., M. A. Schell, M. A. Moran & R. E. Hodson, 1996. Impact of a genetically engineered bacterium with enhanced alkaline phosphatase activity on marine phytoplankton communities. Appl. environ. Microbiol. 62: 6–12.

    Google Scholar 

  • Stihl, A., U. Sommer & A. F. Post, 2001. Alkaline phosphatase activities among populations of the colony–forming diazotrophic cyanobacterium Trichodesmium spp. (Cyanobacteria) in the Red Sea. J. Phycol. 37: 310–317.

    Google Scholar 

  • Suzumura, M. & A. Kamatani 1995. Mineralization of inositol hexaphosphate in aerobic and anaerobic marine sediments: implications for the phosphorus cycle. Geochim. cosmochim. Acta 59: 1021–1026.

    Google Scholar 

  • Taga, N. & H. Kobori, 1978. Phosphatase activity in eutrophic Tokyo Bay. Mar. Biol. 49: 223–229.

    Google Scholar 

  • Tamburini, C., J. Garcin, M. Ragot & A. Bianchi, 2002. Biopolymer hydrolysis and bacterial production under ambient hydrostatic pressure through a 2000m water column in the NW Mediterranean. Deep–Sea Res. (II) 49: 2109–2123.

    Google Scholar 

  • Tezuka, Y., 1990. Bacterial regulation of ammonium and phosphate as affected by the carbon:nitrogen:phosphorus ratio of organic substrates. Microb. Ecol. 19: 227–238.

    Google Scholar 

  • Thingstad, T. F. & F. Rassoulzadegan, 1995. Nutrient limitations, microbial food webs, and ‘biological pumps’: suggested interactions in a P–limited Mediterranean. Mar. Ecol. Prog. Ser. 117: 299–306.

    Google Scholar 

  • Tyrrell, T., 1999. The relative influence of nitrogen and phosphorus on oceanic primary production. Nature 400: 525–531.

    Google Scholar 

  • Uchida, T., 1992. Alkaline phosphatase and nitrate reductase activities in Prorocentrum micans Ehrenberg. Bull. Plankton Soc. Japan Nihon Purankuton Gakkaiho 38: 85–92.

    Google Scholar 

  • Van Wambeke, F., U. Christaki, A. Giannakourou, T. Moutin & K. Souvemerzoglou, 2002. Longitudinal and vertical trends of bacterial limitation by phosphorus and carbon in the Mediterranean Sea. Microb. Ecol. 43: 119–133.

    Google Scholar 

  • Vargo, G. A. & E. Shanley, 1985. Alkaline phosphatase activity in the red–tide dinoflagellate, Ptychodiscus brevis P.S.Z.N.–I. Mar. Ecol. 6: 251–264.

    Google Scholar 

  • Venkateswaran, K. & R. Natarajan, 1983. Distribution of free phosphatase in sediments of Porto Novo. Indian J. mar. Sci. 12: 231–232.

    Google Scholar 

  • Waghmode, A. P., 1985. Study of phosphoglycerate in a marine algae Caulerpa racemosa var. peltata. In Krishnamurthy V. & A. G. Untawale (eds), Marine Plants. Papers Presented at the all India Symposium on Marine Plants, their Biology, Chemistry and Utilization, Dona Paula, Goa.: 93–98.

  • Wright A. C., R. T. Hill, J. A. Johnson, M. C. Roghman, R. R. Colwell & J. G. Morris, Jr, 1996. Distribution of Vibio vulnificus in the Chesapeake Bay. Appl. Environ. Microbiol. 62: 717–724.

    Google Scholar 

  • Yentsch, C. M., C. S. Yentsch & J. P. Perras, 1972. Alkaline phosphatase activity in the tropical marine blue–green algae Oscillatoria erythrea (‘Trichodesmium’). Limnol. Oceanogr. 17: 772–774.

    Google Scholar 

  • Zappa, S., J. Rolland, D. Flament, Y. Gueguen, J. Boudrant & J. Dietrich, 2001. Characterization of a highly thermostable alkaline phosphatase from the euryarchaeon Pyrococcus abyssi. Appl. environ. Microbiol. 67: 4504–4511.

    Google Scholar 

  • Zohary, T. & R. D. Robarts, 1998. Experimental study of microbial P limitation in the eastern Mediterranean. Limnol. Oceanogr. 43: 387–395.

    Google Scholar 

Download references

Rights and permissions

Reprints and permissions

About this article

Cite this article

Phosphatase activity in the sea. Hydrobiologia 493, 187–200 (2003). https://doi.org/10.1023/A:1025453918247

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1025453918247

Keywords

Navigation