Skip to main content
Log in

Modelling biological processes by using a probabilistic P system software

  • Published:
Natural Computing Aims and scope Submit manuscript

Abstract

In this paper we present a probabilistic P system simulator that implements the evolution-communication model proposed in (Cavaliere, 2003) enriched with some probabilistic parameters inspired by the cell biology.After describing the software and its working, we compare the mathematical model used with the biological reality of the cell. Then, we present some mathematical and biological applications showing how one can use this software to simulate simple but interesting biological phenomena, related to respiration and photosynthesis processes in some bacteria.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • Alberts B (1998) Essential Cell Biology. An Introduction to the Molecular Biology of the Cell. Garland Publ Inc, New York, London

    Google Scholar 

  • Alexeeva S, Hellingwerf KJ and Teixeira de Mattos MJ (2002) Quantitative assessment of oxygen availability: perceived aerobiosis and its effect on flux distribution in the respiratory chain of Escherichia coli. Journal of Bacteriology 184: 1402–1406

    Google Scholar 

  • Alexeeva S, de Kort B, Sawers G, Hellingwerf KJ and Teixeira de Mattos MJ (2000) Effects of limited aeration and of the ArcAB System on intermediary pyruvate catabolism in Escherichia coli. Journal of Bacteriology 182: 4934–4940

    Google Scholar 

  • Ardelean I, Tunaru S, Flonta ML, Teodosiu G, Madalin E, Dumitru L and Zarnea G (1999) Increased respiratory activity in light in salt stressed Synechocystis. In: Peschek GA, Loffelhardt W and Schmetterer G (eds) The Phototrophic Prokaryotes, pp. 403–409. Plenum Publisher, New York

    Google Scholar 

  • Ardelean I (2003) Molecular biology of bacteria and its relevance for P systems. In: Păun Gh, Rozenberg G, Salomaa A and Zandron C (eds) Membrane Computing 2002, pp. 1–18. Lecture Notes in Computer Science 2597, Springer-Verlag, Berlin

    Google Scholar 

  • Booth IR (1988) Bacterial Energy Transduction. Academic Press, London

    Google Scholar 

  • Cavaliere M(2003) Evolution-communication P systems. In: Păun Gh, Rozenberg G, Salomaa A and Zandron C (eds) Membrane Computing 2002, pp. 134–145. Lecture Notes in Computer Science 2597, Springer-Verlag, Berlin

    Google Scholar 

  • Hall DO and Rao KK (1994) Photosynthesis. Cambridge University Press

  • Jung H (2001) Towards the molecular mechanism of Na/solute symport in Prokaryotes. Biochem Biophys Acta 1505: 131–143

    Google Scholar 

  • Mayer E (1998) This is Biology – The Science of the Living World. The Belknap Press of the Harward University Press, Cambridge, Massachusetts

    Google Scholar 

  • Miller SL and Orgel LE (1973) The Origin of Life on Earth. Englewood Clifs, Prentice Hall

    Google Scholar 

  • Nicholls DG and Ferguson SJ (2002) Bioenergetics. Academic Press, London

    Google Scholar 

  • Padan E, Venturi M, Gercham Y and Dover N (2001) Na/H antiporters. Biochemica Biophysica Acta 1505: 144–157

    Google Scholar 

  • Păun Gh (2000) Computing with membranes. Journal of Computer and System Sciences 61(1): 108–143

    Google Scholar 

  • Păun Gh (2002) Membrane Computing. An Introduction. Springer-Verlag, Berlin, Heidelberg

    Google Scholar 

  • Pelmont J (1995) Catalyseurs du monde vivant. Press Universitaires de Grenoble, Grenoble

    Google Scholar 

  • Peschek GA (1987) Respiratory electron transport. In: Fay P and Van Baalen C (eds) The Cyanobacteria, pp. 119–161. Elsevier Science Publishers, Amsterdam

    Google Scholar 

  • Peschek GA, Obinger C, Fromwald S and Bergman B (1994) Correlation between immunogold based and activities of the cytochrome-c oxidase (aa 3type) in membranes of salt stressed cyanobacteria. FEMS – Microbiology Letters 124: 431–438

    Google Scholar 

  • Peschek GA and Zoder R (2001) Temperature stress and basic bioenergetic strategies for stress defence. In: Rai LC and Gaur JP (eds) Algal Adaptation to Environmental Stress, pp. 203–258. Springer-Verlag, Berlin

    Google Scholar 

  • Puustinen A, Finel M, Haltia T, Gennis RB and Wikstrom M (1991) Properties of the two terminal oxidades of Escherichia coli. Biochemistry 30: 3936–3942

    Google Scholar 

  • Saier MH (1999) Genome archaeology leading to the characterization and classification of transport proteins. Current Opinion Microbiology 2: 555–561

    Google Scholar 

  • Singer SJ and Nicolson GL (1972) The fluid mosaic model of the structure of cell membranes. Science 175: 720–731

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ardelean, I.I., Cavaliere, M. Modelling biological processes by using a probabilistic P system software. Natural Computing 2, 173–197 (2003). https://doi.org/10.1023/A:1024943605864

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1024943605864

Navigation