Skip to main content
Log in

Why plankton communities have no equilibrium: solutions to the paradox

  • Published:
Hydrobiologia Aims and scope Submit manuscript

Abstract

In a classical paper, Hutchinson (1961) argued that the large number of species in most plankton communities is remarkable in view of the competitive exclusion principle, which suggests that in homogeneous, well-mixed environments species that compete for the same resources cannot coexist. Few ideas in aquatic ecology have evoked more research than this `paradox of the plankton'. This review is an effort to put the main solutions to the paradox that have been proposed over the years into perspective. Hutchinson himself already suggested that the explanation could be that plankton communities are not in equilibrium at all due to weather-driven fluctuations. Subsequent research confirmed that such externally imposed variability can allow many species to coexist. Another important point is that in practice the homogeneous well-mixed conditions assumed in the competitive exclusion principle hardly exist. Even the open ocean, for instance, has a spatial complexity resulting from meso-scale vortices and fronts that can facilitate coexistence of species. Perhaps most excitingly, theoretical work on species interactions has given a counter-intuitive new dimension to the understanding of diversity. Various competition and predation models suggest that even in homogeneous and constant environments plankton will never settle to equilibrium. Instead, interactions between multiple species may give rise to oscillations and chaos, with a continuous wax and wane of species within the community. Long-term laboratory experiments support this view. This chaotic behavior implies among other things that plankton dynamics are intrinsically unpredictable in the long run when viewed in detail. Nonetheless, on a higher aggregation level, indicators such as total algal biomass may show quite regular patterns.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Alekseev, V. V. & A. N. Kornilovsky, 1985. Ecosystems stochasticity model. Ecol. Model. 28: 217-230.

    Google Scholar 

  • Armstrong, R. A. & R. McGehee, 1980. Competitive exclusion. Am. Nat. 115: 151-170.

    Google Scholar 

  • Arneodo, A., P. Coullet, J. Peyraud & C. Tresser, 1982. Strange attractors in Volterra equations for species in competition. J. Math. Biol. 14: 153-157.

    PubMed  Google Scholar 

  • Bjørnstad, O. N. & B. T. Grenfell, 2001. Noisy clockwork: time series analysis of population fluctuations in animals. Science 293: 638-643.

    PubMed  Google Scholar 

  • Boersma, M., 1995. Competition in natural populations of Daphnia. Oecologia 103: 309-318.

    Google Scholar 

  • Bracco, A., A. Provenzale & I. Scheuring, 2000. Mesoscale vortices and the paradox of the plankton. Proc. r. Soc. Lond. B 267: 1795- 1800.

    PubMed  Google Scholar 

  • Brooks, J. L. & S. I. Dodson, 1965. Predation, body size, and composition of plankton. Science 150: 28-35.

    Google Scholar 

  • Buss, L. W. & J. B. C. Jackson, 1979. Competitive networks: nontransitive competitive relationships in cryptic coral reef environments. Am. Nat. 113: 223-234.

    Google Scholar 

  • Cottingham, K. L., 1996. Phytoplankton responses to whole-lake manipulations of nutrients and food webs. Thesis, University of Wisconsin.

  • DeFeo, O. & S. Rinaldi, 1998. Singular homoclinic bifurcations in tritrophic food chains. Math. Biosci. 148: 7-20.

    PubMed  Google Scholar 

  • DeMott, W. R., 1982. Feeding selectivities and relative ingestion rates of Daphnia and Bosmina. Limnol. Oceanogr. 27: 518-527.

    Google Scholar 

  • Doveri, F., M. Scheffer, S. Rinaldi, S. Muratori & Y. A. Kuznetsov, 1993. Seasonality and chaos in a plankton-fish model. Theor. Popul. Biol. 43: 159-183.

    Google Scholar 

  • Ellner, S. & P. Turchin, 1995. Chaos in a noisy world: new methods and evidence from time-series analysis. Am. Nat. 145: 343-375.

    Google Scholar 

  • Fernández, A., S. Huang, S. Seston, J. Xing, R. Hickey, C. Criddle & J. Tiedje, 1999. How stable is stable? Function versus community composition. Appl. Environ. Microbiol. 65: 3697-3704.

    PubMed  Google Scholar 

  • Flöder, S. & U. Sommer, 1999. Diversity in planktonic communities: an experimental test of the intermediate disturbance hypothesis. Limnol. Oceanogr. 44: 1114-1119.

    Google Scholar 

  • Gilpin, M. E., 1979. Spiral chaos in a predator-prey model. Am. Nat. 113: 306-308.

    Google Scholar 

  • Gragnani, A., M. Scheffer & S. Rinaldi, 1999. Top-down control of cyanobacteria: a theoretical analysis. Am. Nat. 153: 59-72.

    Google Scholar 

  • Grover, J. P., 1989. Effects of Si:P supply ratio, supply variability, and selective grazing in the plankton: an experiment with a natural algal and protistan assemblage. Limnol. Oceanogr. 34: 349-367.

    Google Scholar 

  • Gulati, R. D., E. H. R. R. Lammens, M. L. Meijer & E. van Donk (eds), 1990. Biomanipulation, Tool for Water Management. Kluwer Academic Publishers, Dordrecht, The Netherlands: 628 pp.

    Google Scholar 

  • Gulati, R. D., A. L. Ooms-Wilms, O. F. R. van Tongeren, G. Postema & K. Siewertsen, 1992. The dynamics and role of limnetic zooplankton in Loosdrecht Lakes (The Netherlands). Hydrobiologia 233: 69-86.

    Google Scholar 

  • Hastings, A. & T. Powell, 1991. Chaos in a three-species food chain. Ecology 72: 896-903.

    Google Scholar 

  • Hastings, A., C. L. Hom, S. Ellner, P. Turchin & H. C. J. Godfray, 1993. Chaos in ecology - is mother nature a strange attractor? Ann. Rev. Ecol. Syst. 24: 1-33.

    Google Scholar 

  • Heerkloss, R. & G. Klinkenberg, 1998. A long-term series of a planktonic foodweb: a case of chaotic dynamics. Verh. int. Ver. Limnol. 26: 1952-1956.

    Google Scholar 

  • Hogeweg, P. & B. Hesper, 1978. Interactive instructions on population interactions. Comp. Biol. Med. 8: 319-327.

    Google Scholar 

  • Hubbell, S. P., 2001. The Unified Neutral Theory of Biodiversity and Biogeography. Princeton University Press, Princeton: 375 pp.

    Google Scholar 

  • Huisman, J. & F. J. Weissing, 1999. Biodiversity of plankton by species oscillations and chaos. Nature 402: 407-410.

    Google Scholar 

  • Huisman, J. & F. J. Weissing, 2001a. Fundamental unpredictability in multispecies competition. Am. Nat. 157: 488-494.

    Google Scholar 

  • Huisman, J. & F. J. Weissing, 2001b. Biological conditions for oscillations and chaos generated by multispecies competition. Ecology 82: 2682-2695.

    Google Scholar 

  • Huisman, J. & F. J. Weissing, 2002. Oscillations and chaos generated by competition for interactively essential resources. Ecol. Res. 17: 175-181.

    Google Scholar 

  • Huisman, J., A. M. Johansson, E. O. Folmer & F. J. Weissing, 2001. Towards a solution of the plankton paradox: the importance of physiology and life history. Ecol. Lett. 4: 408-411.

    Google Scholar 

  • Huisman, J., R. R. Jonker, C. Zonneveld & F. J. Weissing, 1999. Competition for light between phytoplankton species: experimental tests of mechanistic theory. Ecology 80: 211-222.

    Google Scholar 

  • Hutchinson, G. E., 1941. Ecological aspects of succession in natural populations. Am. Nat. 75: 406-418.

    Google Scholar 

  • Hutchinson, G. E., 1961. The paradox of the plankton. Am. Nat. 95: 137-145.

    Google Scholar 

  • Jackson, J. & L. Buss, 1975. Allelopathy and spatial competition among coral reef invertebrates. Proc. natl. Acad. Sci. U.S.A. 72: 5160-5163.

    Google Scholar 

  • Kersting, K., 1985. Properties of an aquatic micro-ecosystem. V. Ten years of observations of the prototype. Verh. int. Ver. Limnol. 22: 3040-3045.

    Google Scholar 

  • Kuznetsov, Y. A. & S. Rinaldi, 1996. Remarks on food chain dynamics. Math. Biosci. 134: 1-33.

    PubMed  Google Scholar 

  • Litchman, E., 1998. Population and community responses of phytoplankton to fluctuating light. Oecologia 117: 247-257.

    Google Scholar 

  • Lloyd, A. L. & D. Lloyd, 1995. Chaos: its significance and detection in biology. Biol. Rhythm Res. 26: 233-252.

    Google Scholar 

  • Lorenz, E. N., 1964. The problem of deducing the climate from the governing equations. Tellus 16: 1-11.

    Google Scholar 

  • McCauley, E. & W. W. Murdoch, 1987. Cyclic and stable populations: plankton as a paradigm. Am. Nat. 129: 97-121.

    Google Scholar 

  • McGrady-Steed, J., P. M. Harris & P. J. Morin, 1997. Biodiversity regulates ecosystem predictability. Nature 390: 162-165.

    Google Scholar 

  • Naeem, S. & S. Li, 1997. Biodiversity enhances ecosystem reliability. Nature 390: 507-509.

    Google Scholar 

  • Padisák, J., C. S. Reynolds & U. Sommer (eds), 1993. Intermediate Disturbance Hypothesis in Phytoplankton Ecology. Kluwer Academic Publishers, Dordrecht, The Netherlands: 199 pp.

    Google Scholar 

  • Remmert, H. (ed.), 1991. The Mosaic-Cycle Concept of Ecosystems. Springer Verlag, Berlin.

    Google Scholar 

  • Reynolds, C. S., 1993. Scales of disturbance and their role in plankton ecology. Hydrobiologia 249: 157-171.

    Google Scholar 

  • Reynolds, C. S., J. Padisák & U. Sommer, 1993. Intermediate disturbance in the ecology of phytoplankton and the maintenance of species diversity: a synthesis. Hydrobiologia 249: 183-188.

    Google Scholar 

  • Richerson, P. J., R. Armstrong & C. R. Goldman, 1970. Contemporaneous disequilibrium: a new hypothesis to explain the paradox of the plankton. Proc. natl. Acad. Sci. U.S.A. 67: 1710-1714.

    PubMed  Google Scholar 

  • Rinaldi, S. & S. Muratori, 1993. Conditioned chaos in seasonally perturbed predator-prey models. Ecol. Model. 69: 79-97.

    Google Scholar 

  • Rinaldi, S., S. Muratori & Y. Kuznetsov, 1993. Multiple attractors, catastrophes and chaos in seasonally perturbed predator-prey communities. Bull. Math. Biol. 55: 15-35.

    Google Scholar 

  • Ringelberg, J., 1977. Properties of an aquatic micro ecosystem II. Steady-state phenomena in the autotrophic subsystem. Helgolander wiss. Meeresunters. 30: 134-143.

    Google Scholar 

  • Rogers, T. D., 1981. Chaos in systems in population biology. Progr. Theor. Biol. 6: 91-146.

    Google Scholar 

  • Rothhaupt, K. O., 1988. Mechanistic resource competition theory applied to laboratory experiments with zooplankton. Nature 333: 660-662.

    Google Scholar 

  • Rothhaupt, K. O., 1996. Laboratory experiments with a mixotrophic chrysophyte and obligately phagotrophic and phototrophic competitors. Ecology 77: 716-724.

    Google Scholar 

  • Scheffer, M., 1991. Should we expect strange attractors behind plankton dynamics: and if so, should we bother? J. Plankton Res. 13: 1291-1305.

    Google Scholar 

  • Scheffer, M., S. Rinaldi, A. Gragnani, L. R. Mur & E. H. van Nes, 1997a. On the dominance of filamentous cyanobacteria in shallow, turbid lakes. Ecology 78: 272-282.

    Google Scholar 

  • Scheffer, M., S. Rinaldi, Y. A. Kuznetsov & E. H. van Nes, 1997b. Seasonal dynamics of Daphnia and algae explained as a periodically forced predator-prey system. Oikos 80: 519-532.

    Google Scholar 

  • Scheffer, M., D. Straile, E. H. van Nes & H. Hosper, 2001. Climatic warming causes regime shifts in lake foodwebs. Limnol. Oceanogr. 46: 1780-1783.

    Google Scholar 

  • Smale, S., 1976. On the differential equations of species in competition. J. Math. Biol. 3: 5-7.

    PubMed  Google Scholar 

  • Sommer, U., 1985. Comparison between steady state and nonsteady state competition: experiments with natural phytoplankton. Limnol. Oceanogr. 30: 335-346.

    Google Scholar 

  • Sommer, U., 1986. Nitrate-and silicate-competition among Antarctic phytoplankton. Mar. Biol. 91: 345-351.

    Google Scholar 

  • Sommer, U., 1991. Phytoplankton: directional succession and forced cycles. In Remmert, H. (ed), The Mosaic-Cycle Concept of Ecosystem. Springer Verlag, Berlin: 132-146.

    Google Scholar 

  • Sommer, U., Z. M. Gliwicz, W. Lampert & A. Duncan, 1986. The PEG-model of seasonal succession of planktonic events in fresh waters. Arch. Hydrobiol. 106: 433-471.

    Google Scholar 

  • Stone, L., G. Landan & R. M. May, 1996. Detecting time”s arrow: a method for identifying nonlinearity and deterministic chaos in time-series data. Proc. r. Soc. Lond. B 263: 1509-1513.

    Google Scholar 

  • Sugihara, G. & R. M. May, 1990. Nonlinear forecasting as a way of distinguishing chaos from measurement error in time series. Nature 344: 734-741.

    PubMed  Google Scholar 

  • Takeuchi, Y. & N. Adachi, 1983. Existence and bifurcation of stable equilibrium in two-prey, one-predator communities. Bull. Math. Biol. 45: 877-900.

    Google Scholar 

  • Tilman, D., 1977. Resource competition between planktonic algae: an experimental and theoretical approach. Ecology 58: 338-348.

    Google Scholar 

  • Tilman, D., 1981. Tests of resource competition theory using four species of Lake Michigan algae. Ecology 62: 802-815.

    Google Scholar 

  • Tilman, D., 1996. Biodiversity: population versus ecosystem stability. Ecology 77: 350-363.

    Google Scholar 

  • Turchin, P. & A. D. Taylor, 1992. Complex dynamics in ecological time series. Ecology 73: 289-305.

    Google Scholar 

  • Vance, R. R., 1978. Predation and resource partitioning in one predator-two prey model communities. Am. Nat. 112: 797-813.

    Google Scholar 

  • VanBuskirk, R. & C. Jeffries, 1985. Observation of chaotic dynamics of coupled nonlinear oscillators. Phys. Rev. A 31: 3332-3357.

    PubMed  Google Scholar 

  • Van Gemerden, H., 1974. Coexistence of organisms competing for the same substrate: an example among the purple sulfur bacteria. Microb. Ecol. 1: 104-119.

    Google Scholar 

  • VanderMeer, J., 1993. Loose coupling of predator-prey cycles: entrainment, chaos, and intermittency in the classic MacArthur consumer-resource equations. Am. Nat. 141: 687-716.

    Google Scholar 

  • Wilson, H. B. & D. A. Rand, 1993. Detecting chaos in a noisy time series. Proc. r. Soc. Lond. B 253: 239-244.

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Scheffer, M., Rinaldi, S., Huisman, J. et al. Why plankton communities have no equilibrium: solutions to the paradox. Hydrobiologia 491, 9–18 (2003). https://doi.org/10.1023/A:1024404804748

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1024404804748

Navigation