Skip to main content
Log in

Increased photosyntethic efficiency generated by fungal symbiosis in Agave victoria-reginae

  • Published:
Plant Cell, Tissue and Organ Culture Aims and scope Submit manuscript

Abstract

A unique non-pathogenic strain of Fusarium oxysporum was isolated from field-collected plants of Agave victoria-reginae Moore. It was then re-introduced into micropropagated plants of the same species under greenhouse conditions. The fungic inoculation induced a 225% increase in the length of roots, 50% in the number of root branches and 50% in the number of stomata on the adaxial surface of leaves. Also, an increment of 167% in nocturnal acidity and a 122% in malic acid was observed and nocturnal pH was significantly more acid in the inoculated plants. Total chlorophyll and sugar content increased 14 and 172%, respectively. These results indicate a higher photosynthetic efficiency of the plants inoculated with the fungus than those plants which were not inoculated; therefore the association of this unique F. oxysporum strain with A. victoria-reginae Moore was considered as a beneficial symbiosis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • Alves-Santos FM, Benito PE, Eslava PA & Diaz-Minguez JM (1999) Genetic diversity of Fusarium oxysporum strains from common bean fields in Spain. Appl. Environ. Microbiol. 65: 3335–3340

    Google Scholar 

  • Appel DJ & Gordon TR (1996) Relationships among pathogenic and non-pathogenic isolates of Fusarium oxysporum based on the partial sequence of the intergenic spacer region of the ribosomal DNA. Mol. Plant-Microbe Interact. 9: 125–138

    Google Scholar 

  • Bacon CW (1993) Abiotic stress tolerances (moisture, nutrients) and photosynthesis in endophyte-infected tall fescue. Agr. Ecosyst. Environ. 44: 123–141

    Google Scholar 

  • Belesky DP, Devine OJ, Pallas JE Jr. & Stringer WC (1987) Photosynthetic activity of tall fescue as influenced by a fungal endophyte. Photosynthetica 21: 82–87

    Google Scholar 

  • Cervantes-Martínez J, Flores-Hernández R, Rodríguez-Garay B & Santacruz-Ruvalcaba F (2002) Detection of bacterial infection of agave plants by laser-induced fluorescence. Appl. Opt. 41: 2541–2545

    Google Scholar 

  • Cushman JC & Bohner HJ (1997) Molecular genetics of crassulacean acid metabolism. Plant Physiol. 113: 667–676

    Google Scholar 

  • Estrada-Luna AA, Davies FT & Egilla JN (2000) Mycorrhizal fungi enhancement of growth and gas exchange of micropropagated guava plantlets (Psidium guajava L.). Mycorrhiza 10: 1–18

    Google Scholar 

  • Freeman S & Rodriguez RJ (1993) Genetic conversion of a fungal plant pathogen to a non-pathogenic, endophyte mutualist. Science 260: 75–78

    Google Scholar 

  • Fuchs JG & Moënne-Loccoz Defago G (1997) Non-pathogenic Fusarium oxysporum strain Fo47 induces resistance to Fusarium wilt in tomato. Plant Dis. 81: 492–496

    Google Scholar 

  • Fuchs JG & Moënne-Loccoz Defago G (1999) Ability of non-pathogenic Fusarium oxysporum Fo47 to protect tomato against Fusarium wilt. Biol. Control 14: 105–110

    Google Scholar 

  • Gange A & Ayres R (1999) On the relation between arbuscular micorrhizal colonization and plant benefit. Oikos 87: 615–621

    Google Scholar 

  • Gordon TR & Martin RD (1997) The evolutionary biology of Fusarium oxysporum. Annu. Rev. Phytopathol. 35: 111–128

    Google Scholar 

  • Lemanceau P, Bakker PAHM, De Kogel WJ, Alabouvette C & Schippers B (1992) Effect of pseudobactin 358 by Pseudomonas putida WCS358 on suppression of fusarium wilt of carnations by non-pathogenic Fusarium oxysporum Fo47. Appl. Environ. Microbiol. 58: 2978–2982

    Google Scholar 

  • Lemanceau P, Bakker PAHM, De Kogel WJ, Alabouvette C & Schippers B (1993) Antagonistic effect of non-pathogenic Fusarium oxysporum strain Fo47 and pseudobactin 358 upon pathogenic Fusarium oxysporum f. sp. dianthi. Appl. Environ. Microbiol. 59: 74–82

    Google Scholar 

  • Loewe A, Einig W, Shi L, Dizengremel P & Hampp R (2000) Mycorrhiza formation and elevated CO both increase the 2capacity for sucrose synthesis in source leaves of spruce and aspen. New Phytol. 145: 565–574

    Google Scholar 

  • Mathur N & Vyas A (2000) Influence of arbuscular mycorrhizae on biomass production, nutrient uptake and physiological changes in Ziziphus mauritiana Lam. under water stress. J. Arid Environ. 45: 191–195

    Google Scholar 

  • Montgomery DC (1997) Design and Analysis of Experiments. 4th edn. John Wiley and Sons

  • Murashige T & Skoog F (1962) A revised medium for rapid growth and bioassays with tobacco tissue culture. Physiol. Plant. 15: 473–497

    Google Scholar 

  • Nobel PS & Hartsock TL (1983) Relationships between photosynthetically active radiation, nocturnal acid accumulation and CO2 uptake for a crassulacean acid metabolism plant, Opuntia ficus-indica. Plant Physiol. 71: 71–75

    Google Scholar 

  • Paulitz T C & Belanger RR (2001) Biological control in greenhouse systems. Annu. Rev. Phytopathol. 39: 103–133

    Google Scholar 

  • Phillips GC & Collins GB (1979) In vitro tissue cultures of legumes and plant regeneration from callus cultures of red clover. Crop Sci. 19: 59–64

    Google Scholar 

  • Read DJ (1999) Mycorrhiza-the state of the art. In: Varma A & Hock B (eds) Mycorrhiza (pp. 3–34). Springer-Verlag, Berlin, Germany

    Google Scholar 

  • Redman SR, Dunigan DD & Rodríguez RJ (2001) Fungal symbiosis from mutualism to parasitism: who controls the outcome, host or invader? New Phytol. 151: 705–716

    Google Scholar 

  • Redman SR, Sheehan BK, Stout GR, Rodriguez RJ & Henson MJ (2002) Thermotolerance generated by plant / fungal symbiosis. Science 298: 158

    Google Scholar 

  • Rodríguez-Garay B, Acosta-Dueñas B & Gutiérrez-Mora A (1996) Somatic embryogenesis of Agave victoria-reginae Moore. Plant Cell Tiss. Org. Cult. 46: 85–87

    Google Scholar 

  • Robles-Murguía C. (1994) Estudio-anatómico fisiológico comparativo entre el nopal Opuntia ficus indica (L) Miller y el pitayo Stenocereus queretaroensis (Webb. Buxbaum) Tesis de licenciatura Universidad de Guadalajara, México

    Google Scholar 

  • Schulz B, Guske S, Dammann U & Boyle C (1998) Endophyte-host interactions. II. Defining symbiosis of the endophyte-host interaction. Symbiosis 25: 213–227

    Google Scholar 

  • Smith SE & Read DJ (1997) Mycorrhizal Symbiosis (589). Academic Press, San Diego, California

    Google Scholar 

  • Sutton BG, Ting IP & Sutton R (1981) Carbohydrate metabolism of cactus in a desert environment. Plant Physiol. 68: 784–787

    Google Scholar 

  • Taiz L & Zeiger E (1998) Plant Physiology. 2nd edn. (p. 792). Sinauer Associates Inc, Sunderland, MA

    Google Scholar 

  • Warwick LM, Gray PP, Nippard GJ & Quinlan MR (1982) Evolution of the DNS method for analysis lignocellulosic hydrolisates. J. Chem. Tech. Biotechnol. 32: 1016–1022

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Eva N. Obledo.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Obledo, E.N., Barragán-Barragán, L.B., Gutiérrez-González, P. et al. Increased photosyntethic efficiency generated by fungal symbiosis in Agave victoria-reginae . Plant Cell, Tissue and Organ Culture 74, 237–241 (2003). https://doi.org/10.1023/A:1024046925472

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1024046925472

Navigation