Skip to main content
Log in

The Effects of Ante- and Postnatal Hypoxia on the Central Nervous System and Their Correction with Peptide Hormones

  • Published:
Neuroscience and Behavioral Physiology Aims and scope Submit manuscript

Abstract

Ante- and postnatal hypoxia significantly worsened the postnatal development of animals. The posthypoxic behavioral model included hyperactivity and decreased learning ability, these being typical manifestations of attention deficit disorder. A peptide constellation prevented and significantly improved posthypoxic postnatal development and eliminated the majority of negative behavioral changes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. I. P. Ashmarin, V. V. Gavryushov, V. Yu. Ionidi, et al., “Thyroliberin normalizes cerebral circulation and pO2 in neonates,” Dokl. Akad. Nauk SSSR, 312, No. 1, 214–244 (1990).

    Google Scholar 

  2. I. P. Ashmarin and M. F. Obukhova, “Regulatory peptides, a functionally continuous population,” Biokhimiya, 51, No. 4, 3–8 (1986).

    Google Scholar 

  3. I. P. Ashmarin and S. A. Chepurnov, “Thyroliberin, melanostatin, and their analogs - neurophysiological basis of expanded clinical use,” in: Neuroendicrinological Aspects of Current Endocrinology [in Russian], Moscow (1991), p. 7.

  4. I. P. Ashmarin, I. E. Gurskaya, and A. A. Guseva, “Thyroliberin: new physiological effects and potential for clinical use,” Vestn. RAMN, No. 6, 40–44 (1992).

    Google Scholar 

  5. I. P. Ashmarin, Neurophysiology [in Russian], Institute of Biomedical Chemistry Press, Russian Academy of Medical Sciences, Moscow (1996).

    Google Scholar 

  6. I. P. Ashmarin, V. N. Nezavibatko, I. F. Myasoedov, A. A. Kamenskii, I. A. Grivenkov, M. A. Ponomareva-Stepnaya, L. A. Andreeva, A. Ya. Kaplan, V. B. Koshelev, and T. V. Ryasina, “The nootropic adrenocorticotropin 4-10 analog Semax. Fifteen years of experience in the development of studies,” Zh. Vyssh. Nerv. Deyat., 47, No. 2, 420–429 (1997).

    Google Scholar 

  7. P. V. Balan, A. S. Maklakova, Ya. V. Krushinskaya, N. A. Sokolova, and Yu. B. Kudashov, “Delayed effects of acute hypobaric hypoxia in neonatal rats of different ages: the effects of the genopeptide Semax (ACTH4-7-PGP),” Akusherstvo i Ginekologiya, No. 1, 46–49 (1999).

  8. N. A. Bastrikova, I. S. Novoderzhavina, A. A. Kamenskii, N. A. Sokolova, V. L. Kozhura, and I. P. Ashmarin, “The effects of hemorrhagic shock on learning processes in the delayed posthypoxic period,” Byull. Éksperim. Biol. Med., 1289, No. 12, 130–133 (1998).

    Google Scholar 

  9. E. O. Bragin and V. V. Yasentsov, “Opioid and monoamine mechanisms of regulation of body functions in extreme conditions,” in: Science and Technology [in Russian], All-Union Institute of Scientific and Technical Information (VINITI), Human and Animal Physiology Series (1991), Vol. 47.

  10. I. G. Vlasova, N. E. Chepurnova, E. V. Efimova, S. A. Chepurnov, and I. P. Ashmarin, “Thyroliberin - long-lasting antihypoxic action,” Fiziol. Cheloveka, 49, No. 3, 107–109 (1994).

    Google Scholar 

  11. V. A. Voinov, N. I. Losev, and V. M. Bulaev, “The effects of naloxone and thyroliberin on respiration in conditions of acute hypoxia,” Byull. Éksperim. Biol. Med., No. 10, 408–410 (1984).

  12. V. A. Voinov, N. I. Losev, and N. B. Romadanova, “Inspiratory stimulating effects of thyroliberin in conditions of acute respiratory hypoxia,” in: Proceedings of All-Union Scientific Conference, “Reactivity and Resistance. Fundamental and Applied Questions” [in Russian], Kiev (1987), p. 172.

  13. E. N. Goncharenko, S. V. Antonova, S. V. Shestakova, M. Ya. Akhlaya, P. V. Balan, A. S. Maklakova, Ya. V. Krushinskaya, N. A. Sokolova, and I. P. Ashmarin, “Functional and biochemical characteristics of acute hypobaric hypoxia in neonatal and adult rats,” Akusherstvo i Ginekologiya, No. 3, 51–53 (1999).

  14. V. A. Dubynin, N. Yu. Zemskaya, Yu. A. Ivleva, A. A. Kamenskii, S. V. Shestakova, I. V. Malinovskaya, E. N. Goncharenko, L. A. Andreeva, and N. F. Myasoedov, “Delayed effects of β-casomorphin-7 chronically administered to neonatal white rats,” Dokl. Ros. Akad. Nauk., 364, No. 6, 839–842 (1999).

    Google Scholar 

  15. E. V. Efimova S. A. Cherpurnov, and N. E. Chepurnova, “Immediate and delayed effects of thyroliberin given intranasally to humans,” in: Principles and Mechanisms of Activity of the Human Brain [in Russian], Leningrad (1989), p. 248.

  16. T. P. Zhukova, E. I. Znamenskaya, and N. G. Palenova, Structural Changes in the Brain. Perinatal Pathology [in Russian], Meditsina, Moscow (1984).

    Google Scholar 

  17. V. Yu. Ionidi, A. B. Dulenkov, I. P. Ashmarin, S. A. Chepurnov, and N. E. Chepurnova, Thyroliberin - Antagonistic Actions and Normalization of Cerebral Circulation in the Clinical Resuscitation of Neonates. Collection of Reports [in Russian], Moscow, Vo. 20, pp. 52–53 and 75-76 (1991).

    Google Scholar 

  18. V. B. Koshelev, I. Yu. Belov, and N. A. Sokolova, “Antihypoxic actions of a number of endogenous regulatory peptides,” in: Proceedings of Conference “Summaries and Perspectives” [in Russian], St. Petersburg (1994), No. 1, p. 51.

  19. A. S. Maklakova, A. A. Kamenskii, L. A. Alfeeva, N. G. Levitskaya, N. F. Nezavibat'ko, and I. P. Ashmarin, “Behavioral effects of β-casomorphin-7 and its des-Tyr analogs,” Byull. Éksperim. Biol. Med., No. 8, 155–158 (1993).

    Google Scholar 

  20. A. S. Maklakova, A. A. Kamenskii, L. A. Alfeeva, I. V. Nazarenko, and N. F. Nezavibat'ko, “The effects of β-casomorphin-7 on the level of food-related and defensive motivation in different types of learning,” Zh. Vyssh. Nerv. Deyat., 45, No. 6, 1143–1150 (1995).

    Google Scholar 

  21. A. S. Maklakova, The Neurotropic Effects of a Milk β-Casein Fragment, the Heptapeptide β-Casomorphin-7 [in Russian], Author's abstract of dissertation, Moscow State University Press, Moscow (1996).

    Google Scholar 

  22. M. V. Maslova, A. S. Maklakova A. V. Graf, N. A. Sokolova, I. P. Ashmarin, N. Yu. Kudryashova, Ya. V. Krushinskaya, E. N. Goncharenko, and S. V. Shestakova, “Brain bioamines and the behavior of offspring after antenatal hypoxia: effects of peptide neuromodulators,” Neirokhimiya (in press).

  23. M. V. Maslova, A. S. Maklakova, M. V. Shkol'nikov, K. S. Zemlyanskii, and N. A. Sokolova, “The effects of prenatal acute hypobaric hypoxia on the behavioral responses of neonatal rats,” in: Fifth All-Russian Conference “Human Developmental Physiology,” Celebrating the 55th Anniversary from the Foundation of the Institute [in Russian], Moscow (2000), pp. 303–304.

  24. M. A. Ponomareva-Stepnaya, V. N. Nezavibat'ko, L. V. Antonova, L. A. Andreeva, L. Yu. Alfeeva, V. N. Potamin, A. A. Kamenskii, and I. P. Ashmarin, “An analog of ACTH4-10 - a long-acting learning stimulator,” Khim. Farm. Zh., No. 7, 790–795 (1984).

    Google Scholar 

  25. Ts. V. Serbenyuk, I. E. Gurskaya, and A. D. Salyuta, “Restoration of impaired respiratory activity in cats by thyroliberin,” Byull. Éksperim. Biol. Med., 106, No. 7, 17 (1990).

    Google Scholar 

  26. A. B. Sorokin, N. N. Zavadenko, A. S. Petrukhin, N. L. Gorbachevskaya, N. G. Manelis, N. V. Grigor'eva, and N. Yu. Suvorina, “Attention deficit with hyperactivity in children: results of a multidisciplinary study,” in: Proceedings of the First International Conference in Memory of A. R. Luriya [in Russian], Moscow (1997), p. 37.

  27. É. A. Édel'shtein, Perinatal Hypoxic Neurological Syndromes [in Russian], TsOLIUV Press, Moscow (1998).

    Google Scholar 

  28. I. P. Ashmarin, V. N. Nazavibatko, N. G. Levitskaya, V. B. Koshelev, and A. A. Kamensky, “Design and investigation of an ACTH(4-10) analogue lacking D-amino acids and hydrophobic radicals,” Neurosci. Res. Commun., 16, No. 2, 105–112 (1995).

    Google Scholar 

  29. V. Brantl, H. Techemacher, A. Henschen, and F. Lottspeich, “Novel opioid peptides derived from casein (β-casomorphins). I. Isolation from bovine casein peptone,” Hoppe-Seyler's Z. Physiol. Chem., 360, 1211–1216 (1979).

    Google Scholar 

  30. M. Dambska, D. Maslinska, and I. Kuchna, Neuropatol. Pol., 30, No. 3-4, 245–253 (1992).

    Google Scholar 

  31. A. I. Faden, T. P. Jacobs, and J. W. Holaday, “Opiate antagonist in neurologic recovery after spinal injury,” Science, 211, 493–494 (1981).

    Google Scholar 

  32. A. I. Faden, T. P. Jacobs, and J. W. Holaday, “Thyrotropin-releasing hormone improves neurologic recovery after spinal trauma in cats,” New Eng. J. Med., 305, 1063–1067 (1981).

    Google Scholar 

  33. M. T. Lin, H. K. Chan, C. F. Chen, and G. W. Teh, “Involvement of both opiate and catecholaminergic receptors in the behavioral excitation provoked by thryotropin-releasing hormone,” Neuropharmacol., 22, 463–469 (1983).

    Google Scholar 

  34. L. Nordstrom and S. Arulkumaran, “Intrapartum fetal hypoxia and biochemical markers: a review,” Obstet. Gynecol. Surv., 53, No. 10, 645–657 (1998).

    Google Scholar 

  35. C. Nyakas, B. Buwalda, R. J. Kramers, J. Traber, and P. G. Luiten, “Postnatal development of hippocampal and neocortical cholinergic and serotoninergic innervations in rat: effects of nitrite-induced prenatal hypoxia and nimodipine treatment,” Neurosci., 59, No. 3, (1994).

  36. C. Nyakas, B. Buwalda, and P. G. Luiten, “Hypoxia and brain development,” Progr. Neurobiol., 49, No. 1, 1–51 (1996).

    Google Scholar 

  37. A. Pasi, H. Mahler, N. Lansel, C. Bernasconi, and F. Messiha, “β-Casomorphin-imunoreactivity in the brain stem of the human infant,” Res. Commun. Chem. Pathol. Pharmacol., 80, 305–322 (1993).

    Google Scholar 

  38. T. A. Slotkin, J. L. Saleh, E. C. McCook, and F. J. Seidler, “Impaired cardiac function during postnatal hypoxia in rats exposed to nicotine prenatally: implications for perinatal morbidity and mortality, and for sudden infant death syndrome,” Teratology, 55, No. 3, 177–184 (1997).

    Google Scholar 

  39. R. C. Vannucci, “Hypoxic-ischemic encephalopathy,” Amer. J. Perinatol., 17, No. 3, 113–120 (2000).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Maslova, M.V., Maklakova, A.S., Sokolova, N.A. et al. The Effects of Ante- and Postnatal Hypoxia on the Central Nervous System and Their Correction with Peptide Hormones. Neurosci Behav Physiol 33, 607–611 (2003). https://doi.org/10.1023/A:1023938905744

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1023938905744

Navigation