J. D. Doll, P. J. Rossky, and H. L. Friedman, “Brownian dynamics as smart Monte Carlo simulation,” *Journal of Chemical Physics* vol. 69 pp. 4628–4633, 1978.

J. A. Doornik, *Ox: Object Oriented Matrix Programming, 1.10*, Chapman & Hall: London, 1996.

D. Down, S. P. Meyn, and R. L. Tweedie, “Exponential and uniform ergodicity of Markov processes,” *Ann. Probab.* vol. 23 pp. 1671–1691, 1995.

H. Ganidis, B. Roynette, and F. Simonot, “Convergence rate of some semi-groups to their invariant probability,” *Stochastic Processes and their Applications* vol. 68 pp. 65–82, 1999.

C. D. Gelatt, S. Kirkpatrick, and M. P. Vecchi, “Optimization by simulated annealing,” *Science* vol. 220 pp. 671–680, 1983.

W. K. Hastings, “Monte Carlo sampling methods using Markov chains and their applications,” *Biometrika* vol. 57 pp. 97–109, 1970.

S. F. Jarner and G. O. Roberts, Convergence of heavy tailed MCMC algorithms. available at http://www.statslab.cam.ac.uk/ ~ mcmc/

I. Karatzas and S. E. Shreve, *Brownian Motion and Stochastic Calculus*, Springer-Verlag: New York, 1991.

J. Kent, “Time-reversible diffusions,” *Adv. Appl. Probab.* vol. 10 pp. 819–835, 1978.

I. E. Leonard, “The matrix exponential,” *SIAM Review* vol. 38 pp. 507–512, 1996.

E. Marinari and G. Parisi, “Simulated tempering: A new Monte Carlo methods,” *Europhysics Letters* vol. 19 pp. 451–458, 1992.

S. P. Meyn and R. L. Tweedie, *Markov Chains and Stochastic Stability*, Springer-Verlag: London, 1993.

S. P. Meyn and R. L. Tweedie, “Stability of Markovian processes III: Foster-Lyapunov criteria for continuous time processes,” *Adv. Appl. Probab.* vol. 25 pp. 518–548, 1993.

C. Moler and C. Van Loan, “Nineteen dubious ways to compute the exponential of a matrix,” *SIAM Review* vol. 20 pp. 801–836, 1978.

R. Neal, “Sampling from multimodal distributions using tempered transitions,” *Statistics and Computing* vol. 6 pp. 353–366, 1996.

T. Ozaki, “A bridge between nonlinear time series models and nonlinear stochastic dynamical systems: A local linearization approach,” *Statistica Sinica* vol. 2 pp. 113–135, 1992.

G. O. Roberts and J. S. Rosenthal, “Optimal scaling of discrete approximations to Langevin diffusions,” *Journal of the Royal Statistical Society, Series B* vol. 60 pp. 255–268, 1998.

G. O. Roberts and J. S. Rosenthal, “Optimal scaling for various Metropolis-Hastings algorithms,” *Statistical Science*, 2001.

G. O. Roberts and R. L. Tweedie, “Exponential convergence of Langevin diffusions and their discrete approximations,” *Bernouilli* vol. 2 pp. 341–364, 1996a.

G. O. Roberts and R. L. Tweedie, “Geometric convergence and central limit theorems for multi-dimensional Hastings and Metropolis algorithms,” *Biometrika* vol. 83 pp. 95–110, 1996b.

L. C. G. Rogers and D. Williams, *Diffusions, Markov Processes and Martingales*, John Wiley: New York, 1987.

I. Shoji and T. Ozaki, “A statistical method of estimation and simulation for systems of stochastic differential equations,” *Biometrika* vol. 85 pp. 240–243, 1998.

O. Stramer and R. L. Tweedie, “Langevin-type models I: Diffusions with given stationary distributions, and their discretizations,” *Methodology and Computing in Applied Probability* vol. 1 pp. 283–306, 1999a.

O. Stramer and R. L. Tweedie, “Langevin-type models II: Self-targeting candidates for mcmc algorithms,” *Methodology and Computing in Applied Probability* vol. 1 pp. 307–328, 1999b.

D. W. Stroock and S. R. S. Varadhan, *Multidimensional Diffusion Processes*, Springer-Verlag: Berlin, 1979.