1.

P.G. Saffman and G.I. Taylor, The penetration of a fluid into a porous medium or Hele-Shaw cell. *Proc. R. Soc. London* A245 (1958) 312–329.

2.

S.J. Chapman, On the rôle of Stokes lines in the selection of Saffman-Taylor fingers with small surface tension. *Eur. J. Appl. Math.* 10 (1999) 513–534.

3.

R. Combescot, T. Dombre, V. Hakim and Y. Pomeau, Shape selection of Saffman-Taylor fingers. *Phys. Rev. Lett.* 56 (1986) 2036–2039.

4.

R. Combescot, V. Hakim, T. Dombre, Y. Pomeau and A. Pumir, Analytic theory of the Saffman-Taylor fingers. *Phys. Rev.* A37 (1988) 1270–1283.

5.

D.C. Hong and J.S. Langer, Analytic theory of the selection mechanism in the Saffman-Taylor problem. *Phys. Rev. Lett.* 56 (1986) 2032–2035.

6.

B.I. Shraiman, Velocity selection and the Saffman-Taylor problem. *Phys. Rev. Lett.* 56 (1986) 2028–2031.

7.

S. Tanveer, Surprises in viscous fingering. *J. Fluid Mech.* 409 (2000) 273–308.

8.

A.P. Aldushin and B.J. Matkowsky, Selection in the Saffman-Taylor finger problem and the Taylor-Saffman bubble problem without surface tension. *Appl. Math. Lett.* 11 (1998) 57–62.

9.

A.P. Aldushin and B.J. Matkowsky, Extremum principles for selection in the Saffman-Taylor finger and Taylor-Saffman bubble problems. *Phys. Fluids* 11 (1999) 1287–1296.

10.

C. Charach, B. Zaltzman and I.G. Gotz, Interfacial kinetic effect in planar solidification problems without initial undercooling. *Math. Model Method Appl. Sci.* 4 (1994) 331–354.

11.

J.D. Evans and J.R. King, Asymptotic results for the Stefan problem with kinetic undercooling. *Q. J. Mech. Appl. Math.* 53 (2000) 449–473.

12.

R.C. Kerr, A.W. Woods, M.G. Worster and H.E. Huppert, Solidification of an alloy cooled from above. 2. Nonequilibrium interfacial kinetics. *J. Fluid Mech.* 217 (1990) 331–348.

13.

S.J. Chapman, Asymptotic analysis of the Ginzburg-Landau model of superconductivity-reduction to a freeboundary model. *Quart. Appl. Math.* 53 (1995) 601–627.

14.

H.K. Kuiken, Edge effects in crystal growth under intermediate diffusive kinetic control. *IMA J. Appl. Math.* 35 (1985) 117–129.

15.

N.B. Pleshchinskii and M. Reissig, Hele-Shaw flows with nonlinear kinetic undercooling regularization. *Nonlin. Anal.-Theor. Meth. App.* 50 (2002) 191–203.

16.

M. Reissig, S.V. Rogosin and F. Hubner, Analytical and numerical treatment of a complex model for Hele-Shaw moving boundary value problems with kinetic undercooling regularization. *Eur. J. Appl. Math.* 10 (1999) 561–579.

17.

S.J. Chapman, J.R. King and K.L. Adams, Exponential asymptotics and Stokes lines in nonlinear ordinary differential equations. *Proc. R. Soc. London* A454 (1998) 2733–2755.

18.

J.W. McLean and P.G. Saffman, The effect of surface tension on the shape of fingers in a Hele-Shaw cell. *J. Fluid Mech.* 102 (1981) 445–469.

19.

G.F. Carrier, M. Krook and C.E. Pearson, *Functions of a Complex Variable*. New York: McGraw-Hill (1966) 438 pp.

20.

M.V. Berry, Waves near Stokes lines. *Proc. R. Soc. London* A427 (1990) 265–280.

21.

J.R. King, *Mathematical Aspects of Semiconductor Process Modelling*. D Phil thesis, University of Oxford (1986) 408 pp.

22.

J.R. King, Interacting Stokes lines. *In*: C.J. Howls, T. Kawai and Y. Takei (eds.), *Towards the Exact WKB Analysis of Differential Equations, Linear or Nonlinear*. Kyoto University Press (2000) pp. 165–178.

23.

M.D. Kruskal and H. Segur, Asymptotics beyond all orders in a model of crystal growth. *Stud. Appl. Math.* 85 (1991) 129–181.