Aggoune, M., Atlas, L., Cohn, D., Damborg, M., El-Sharkawi, M., & Marks, R. II. (1989). Artificial neural networks for power system static security assessment. *Proceedings, International Symposium on Circuits and Systems*. IEEE.

Angluin, D. (1986). Learning regular sets from queries and counter-examples. (Technical Report YALEU/DCS/TR-64). Dept. of Computer Science, Yale University, New Haven, CT.

Ash, T. (1989). Dynamic node creation in backpropagation networks. *ICS Report 8901*. Institute for Cognitive Science, University of California, San Diego, CA.

Aum, E., & Haussler, D. (1989). What size net gives valid generalization? In D. Touretzky (Ed.), *Advances in neural information processing systems*, (Vol. 1). San Francisco, CA: Morgan Kaufmann.

Baum, E., & Lang, K. (1991). Constructing hidden units using examples and queries. In R. Lippmann et al. (Eds.), *Advances in neural information processing systems* (Vol. 3). San Francisco, CA: Morgan Kaufmann.

Blum, A., & Rivest, R. (1989). Training a 3-node neural network is NP-complete. In D. Touretzky (Ed.), *Advances in neural information processing systems, Volume 1*. San Francisco, CA: Morgan Kaufmann.

Blumer, A., Ehrenfeucht, A., Haussler, D., & Warmuth, M. (1989). Learnability and the Vapnik-Chervonenkis dimension. *JACM, 36* (*4*), 929–965.

Cohn, D., Atlas, L., & Ladner, R. (1990). Training connectionist networks with queries and selective sampling. In D. Touretzky (Ed.), *Advances in neural information processing systems*, (Vol. 2). San Francisco, CA: Morgan Kaufmann.

Cohn, D., & Tesauro, G. (1992). How tight are the Vapnik-Chervonenkis bounds? *Neural Computation 4* (*2*), 249–269.

Eisenberg, B., & Rivest, R. (1990). On the sample complexity of pac-learning using random and chosen examples. In M. Fulk & J. Case (Eds.), *ACM 3rd Annual Workshop on Computational Learning Theory*. San Francisco, CA: Morgan Kaufmann.

Fernald, A., & Kuhl, P. (1987). Acoustic determinants of infant preference for Motherese speech. *Infant Behavior and Development, 10*, 279–293.

Freund, Y., Seung, H.S., Shamir, E., & Tishby, N. (1993). Information, prediction, and query by committee. In S. Hanson et al., (Eds.). *Advances in Neural Information Processing Systems* (Vol. 5). San Francisco, CA: Morgan Kaufmann.

Haussler, D. (1987). Learning conjunctive concepts in structural domains. *Proceedings, AAAI '87* (pp. 466–470). San Francisco, CA: Morgan Kaufmann.

Haussler, D., (1992). Decision-theoretic generalizations of the PAC model for neural net and other applications.

*Information and Computation*,

*100* (

*1*), 78–150.

PubMedHwang, J.-N., Choi, J., Oh, S., & Marks, R. (1990). Query learning based on boundary search and gradient computation of trained multilayer perceptrons. *IJCNN 90*. San Diego, CA.

Judd, S. (1988). On the complexity of loading shallow neural networks. *Journal of Complexity, 4*, 177–192.

Le Cunn, Y., Denker, J., & Solla, S. (1990). Optimal brain damage. In D. Touretzky (Ed.), *Advances in neural information processing systems* (Vol. 2). San Francisco, CA: Morgan Kaufmann.

MacKay, D. (1992). Information-based objective functions for active data selection. *Neural Computation, 4 (4)*, 590–604.

Mitchell, T. (1982). Generalization as search. *Artificial Intelligence, 18*, 203–226.

Pratt, L.Y. (1993). Discriminability-based transfer between neural networks. In C.L. Giles, et al. (Eds.), *Advances in Neural Information Processing Systems*, (Vol. 5). San Francisco, CA: Morgan Kaufmann.

Rumelhart, D., Hinton, G., & Williams, R. (1986). Learning internal representations by error propagation. In D. Rumelhart & J. McClelland (Eds.), *Parallel distributed processing*, Cambridge, MA: MIT Press.

Seung, H.S., Opper, M., & Sompolinsky, H. (1992). Query by committee. In *Proceedings of the Fifth Annual ACM Workshop on Computational Learning Theory* (pp. 287–294). New York: ACM.

Valiant, L. (1984). A theory of the learnable. *Communications of the ACM, 27*, 1134–1142.