Skip to main content
Log in

Elution Patterns from Capillary GC for Methyl-Branched Alkanes

  • Published:
Journal of Chemical Ecology Aims and scope Submit manuscript

Abstract

A common and confusing problem in analyses of insect hydrocarbons is in making sense of complicated gas chromatograms and interpreting mass spectra since branched chain compounds differing by one or two carbons in backbone or chain length may elute from the column at nearly the same time. To address this confusing situation, relative gas chromatography (GC) retention times are presented for typical mono-, di-, tri-, and tetramethylalkanes comprising most of the commonly appearing series of homologous methyl-branched alkanes up to 53 carbons that are found in insect cuticular hydrocarbons. Typical insect-derived methylalkanes with backbones of 33 carbons were characterized by Kovats indices (KI); monomethyl alkanes elute between KI 3328 and 3374, dimethylalkanes elute between KI 3340 and 3410, trimethylalkanes elute between KI 3378 and 3437, and tetramethylalkanes elute between KI 3409 and 3459, depending upon the positions of substituents. A protocol is described for identification of methyl-branched hydrocarbons eluted from nonpolar polysiloxane DB-1 capillary GC columns. In this protocol, retention indices (KI values) are assigned to peaks, then the patterns in GC peaks that probably contain homologs are marked to assist subsequent GC-mass spectrometric (GC-MS) interpretation. Use of the KI allows assignment of likely structures and the elimination of others, with demonstrative consistency, as there are no known exceptions. Interpretation of electron ionization mass spectra can then proceed within narrowed structural possibilities without the necessity of chemical ionization GC-MS analysis. Also included are specific examples of insect hydrocarbons that were assembled from 30 years of the literature, and these are intended to help with confirmation of confusing or contradictory structures.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  • Bernier, U. R., Carlson, D. A., and Geden, C. J. 1998. Gas chromatography/mass spectrometry analysis of the cuticular hydrocarbons from parasitic wasps of the genus Muscidifurax. J. Am. Soc. Mass Spectrom. 9:320-332.

    Google Scholar 

  • Blomquist, G. J., Nelson, D. R., and DE Renobales, M. 1987. Chemistry, biochemistry and physiology of insect cuticular lipids. Arch. Insect Biochem. Physiol. 6:227-265.

    Google Scholar 

  • Brenner, R. J., Carlson, D. A., Roth, L. M., and Patterson, R. S. 1993. Morphological and chemotaxonomic identification of Blattella cockroaches (Blattaria: Blattellidae) from Taiwan and selected South Pacific basin locations. Invertebr. Taxon. 7:1205-1219.

    Google Scholar 

  • Carlson, D. A., and Brenner, R. J. 1988. Cuticular hydrocarbons of North American Blattella for identification of all life stages. Ann. Entomol. Soc. Am. 81:711-723.

    Google Scholar 

  • Carlson, D. A., and Langley, P. A. 1986. Tsetse alkenes: Appearance of novel sex-specific compounds as an effect of mating. J. Insect Physiol. 32:781-790.

    Google Scholar 

  • Carlson, D. A., and Yocom, S. R. 1986. Cuticular hydrocarbons from six species of fruit flies. Arch. Insect Biochem. Physiol. 3:397-412.

    Google Scholar 

  • Carlson, D. A., Langley, P. A., and Huyton, P. 1978. A sex pheromone in the tsetse fly: Isolation, identification and synthesis. Science 201:750-753.

    Google Scholar 

  • Carlson, D. A., Milstrey, S. K., and Narang, S. K. 1993. Genetic classification of the tsetse flies using cuticular hydrocarbons. Bull. Entomol. Res. 83:507-515.

    Google Scholar 

  • Carlson, D. A., Reinert, J. F., Bernier, U. R., Sutton, B. D., and Seawright, J. A. 1997. Analysis of the cuticular hydrocarbons among species of the Anopheles quadrimaculatus complex (Diptera: Culicidae). J. Am. Mosq. Control Assoc. 13(Suppl):103-111.

    Google Scholar 

  • De Renobales, M., Nelson, D. R., and Blomquist, G. J. 1991. Cuticular lipids, pp. 240-251, in K. Binnington and A. Retnakaran (eds.). Physiology of the Insect Epidermis. CSIRO Publications, East Melbourne, Victoria, Australia.

    Google Scholar 

  • Geden, C. J., Bernier, U. R., Carlson, D. A., and Sutton, B. D. 1998. Identification of Muscidifurax spp., parasitoids of muscoid flies, by composition patterns of cuticular hydrocarbons. Biol. Control 12:200-207.

    Google Scholar 

  • Haverty, M. I., Page, M., Nelson, L. J., and Blomquist, G. J. 1988. Cuticular hydrocarbons of dampwood termites, Zootermopsis: Intra-and intercolony variation and potential as taxonomic characters. J. Chem. Ecol. 14:1035-1058.

    Google Scholar 

  • Haverty, M. I., Nelson, L. J., and Page, M. 1990. Cuticular hydrocarbons of four populations of Coptotermes formosanus Shiraki in the United States. Similarities and origins of introductions. J. Chem. Ecol. 16:1635-1647.

    Google Scholar 

  • Haverty, M. I., Forschler, B. T., and Nelson, L. J. 1996. An assessment of the taxonomy of Reticulitermes (Isoptera: Rhinotermitidae) from the Southeastern United States based on cuticular hydrocarbons. Sociobiology 28:287-318.

    Google Scholar 

  • Hupe, K. P. 1965. A nomogram for the determination of the retention index. J. Gas Chromatogr. 3:12-14.

    Google Scholar 

  • Kissin, Y. V., and Feulmer, G. P. 1986. Gas chromatographic analysis of alkyl-substituted paraffins. J. Chromatogr. Sci. 24:53-59.

    Google Scholar 

  • Kissin, Y. V., Feulmer, G. P., and Payne, W. B. 1986. Gas chromatographic study of polymethyl-substituted alkanes. J. Chromatogr. Sci. 24:164-169.

    Google Scholar 

  • Kovats, E. 1965. Gas chromatographic comparison of organic substances in the retention index system. Adv. Chromatogr. 1:229-247.

    Google Scholar 

  • Lange, C., Basselier, J.-J., Bagneres, A.-G., Escoubas, P., Lemaire, M., Lenoir, A., Clement, J.-L., Bonavita-Cougourdan, A., Trabalon, M., and Kampan, M. 1989. Strategy for the analysis of cuticular hydrocarbon waxes from insects using gas chromatography/mass spectrometry with electron impact and chemical ionization. Biomed. Environ. Mass Spectrom. 18:787-800.

    Google Scholar 

  • Lockey, K. 1988. Review. Lipids of the insect cuticle: Origin, composition and function. Comp. Biochem. Physiol. 898:595-645.

    Google Scholar 

  • McDowell, P. G., Whitehead, D. L., and Chaudhury, F. B. 1981. The isolation and identification of the cuticular sex-stimulant pheromone of the tsetse Glossina pallidipes Austen (Diptera: Glossinidae). Insect Sci. Appl. 2:181-187.

    Google Scholar 

  • Nelson, D. R. 1978. Long chain methyl-branched hydrocarbons: Occurrence, biosynthesis and function. Adv. Insect Physiol. 13:1-33.

    Google Scholar 

  • Nelson, D. R. 1993. Methyl branched lipids in insects, pp. 271-315, in D. W. Stanley-Samuelson and D. R. Nelson (eds.). Insect Lipids: Chemistry, Biochemistry and Biology. University of Nebraska Press, Lincoln, Nebraska.

    Google Scholar 

  • Nelson, D. R., and Blomquist, G. J. 1995. Insect waxes, pp. 1-90, in R. J. Hamilton (ed.). Waxes: Chemistry, Molecular Biology and Functions. The Oily Press, Dundee, Scotland.

    Google Scholar 

  • Nelson, D. R., and Carlson, D. A. 1986. Cuticular hydrocarbons of the tsetse flies Glossina morsitans, G. austeni and G. pallidipes. Insect Biochem. 16:403-416.

    Google Scholar 

  • Nelson, D. R., and Sukkestad, D. R. 1970. Normal and branched aliphatic hydrocarbons from the eggs of the tobacco hornworm. Biochemistry 9:4601-4611.

    Google Scholar 

  • Nelson, D. R., Sukkestad, D. R., and Zaylskie, R. G. 1972. Mass spectra of methyl-branched hydrocarbons from eggs of the tobacco hornworm. J. Lipid Res. 13:413-421.

    Google Scholar 

  • Nelson, D. R., Carlson, D. A., and Fatland, C. L. 1988. Cuticular hydrocarbons of the tsetse flies, II: G. fuscipes fuscipes, G. palpalis palpalis, G. p. gambiensis, G. tachinoides, and G. brevipalpis, J. Chem. Ecol. 14:963-987.

    Google Scholar 

  • Page, M., Nelson, L. J., Blomquist, G. J., and Seybold, S. J. 1997. Cuticular hydrocarbons as chemotaxonomic characters of pine engraver beetles (Ips spp.) in the grandicollis subgeneric group. J. Chem. Ecol. 23:1053-1098.

    Google Scholar 

  • Pomonis, J. G. 1989. Cuticular hydrocarbons of the screwworm Cochliomyia homnivorax (Diptera: Calliphoridae). Isolation, identification, and quantification as a function of age, sex, and irradiation. J. Chem. Ecol. 15:2301-2317.

    Google Scholar 

  • Pomonis, J. G., Nelson, D. R., and Fatland, C. L. 1980. Insect hydrocarbons. 2. Mass spectra of dimethylalkanes and the effect of the number of methylene units between groups on fragmentation. J. Chem. Ecol. 6:965-972.

    Google Scholar 

  • Pomonis, J. G., Nelson, D. R., and Fatland, C. L. 1989. Synthetic methyl and dimethylalkanes. Kovats indices, [13C]NMR and mass spectra of some methyl pentacosanes and 2,X-dimethylheptacosanes. J. Chem. Ecol. 15:2319-2333.

    Google Scholar 

  • Sutton, B. D., and Carlson, D. A. 1997a. Cuticular hydrocarbons of Glossina III: Subgenera Glossina and Nemorhina. J. Chem. Ecol. 23:1291-1319.

    Google Scholar 

  • Sutton, B. D., and Carlson, D. A. 1997b. Cuticular hydrocarbon variation within the Tabanus nigrovittatus (Diptera: Tabanidae) species complex of the Atlantic Coast of North America. Ann. Entomol. Soc. Am. 90:542-549.

    Google Scholar 

  • Sutton, B. D., Carlson, D. A., Lockwood, J. A., and Nunamaker, R. A. 1996. Cuticular hydrocarbons of glacially-preserved Melanoplus (Orthoptera: Acrididae): Identification and comparison with hydrocarbons of M. sanguinipes (Fabr) and M. spretus Walsh. J. Orthop. Res. 5:1-12.

    Google Scholar 

  • Szafranek, J., Malinowski, E., Dubis, E., Hebanowska, E., Nawrot, J., Oksman, P., and Pihlaja, J. 1994. Identification of branched alkanes in lipids of Leptinotarsa decemlineata Say and Tribolium destructor by GC-MS: A comparison of main-beam and link-scanned spectra. J. Chem. Ecol. 29:2197-2212.

    Google Scholar 

  • Takeda, I. 1991. Use of literature values of temperature programmed retention indexes in qualitative analysis by isothermal gas chromatography. J. High Resolut. Chromatogr. Chromatogr. Commun. 14:824-828.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Carlson, D.A., Bernier, U.R. & Sutton, B.D. Elution Patterns from Capillary GC for Methyl-Branched Alkanes. J Chem Ecol 24, 1845–1865 (1998). https://doi.org/10.1023/A:1022311701355

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1022311701355

Navigation