Skip to main content
Log in

Theory of the Small Amplitude Shape Oscillations of a Helium-II Drop

  • Published:
Journal of Low Temperature Physics Aims and scope Submit manuscript

Abstract

We present an analysis of the small amplitude shape oscillations of a superfluid helium drop surrounded by saturated helium vapor. The equations of the two-fluid model are used to describe the liquid motion within the drop. The calculations are performed for two different sets of boundary conditions at the surface of the drop. The first set corresponds to the physical situation in which no evaporation or condensation of helium takes place during the oscillation (no evaporation model), whereas the second set apply when the liquid at the surface of the drop is always in phase equilibrium with the vapor (equilibrium model). The theoretical results for frequency and damping rate are then compared with experimental data.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. D. L. Whitaker, C. Kim, C. L. Vicente, M. A. Weilert, H. J. Maris, and G. M. Seidel, J. Low Temp. Phys. 113, 491 (1998).

    Google Scholar 

  2. Lord Rayleigh, Proc. Roy. Soc. Lond. 29, 71 (1879).

    Google Scholar 

  3. Lord Kelvin, in Mathematical and Physical Papers, Clay and Sons, London (1890).

    Google Scholar 

  4. H. Lamb, Hydrodynamics, 6th Ed., Cambridge University Press, Cambridge (1932) (reprinted by Dover, New York (1945)).

    Google Scholar 

  5. S. Chandrasekhar, Proc. Lond. Math. Soc. 9, 141 (1959).

    Google Scholar 

  6. S. Chandrasekhar, Hydrodynamic and Hydromagnetic Stability, Clarendon Press, Oxford (1961).

    Google Scholar 

  7. W. H. Reid, Quart. Appl. Math. 18, 86 (1960).

    Google Scholar 

  8. C. A. Miller and L. E. Scriven, J. Fluid Mech. 32, 417 (1968).

    Google Scholar 

  9. P. L. Marston, J. Acoust. Soc. Am. 67, 15 (1980).

    Google Scholar 

  10. A. Prosperetti, J. de Mech. 19, 149 (1980).

    Google Scholar 

  11. L. D. Landau and E. M. Lifshitz, Fluid Mechanics, Butterwoth-Heinenann, Oxford (1981), 2nd Ed., Ch. 16.

    Google Scholar 

  12. The density and viscosity of the normal fluid, the total density of the liquid, and the surface tension were taken from R. J. Donnelly, R. A. Riegelmann, and C. F. Barenghi, The Observed Properties of Liquid Helium at the Saturated Vapor Pressure, A Report of the Department of Physics, University of Oregon (1993), unpublished. This report contains recommended values of the normal fluid viscosity only down to 0.8 K. Below this temperature we used the viscosity calculated from the heat flow experiments of R. W. Whitworth, Proc. R. Soc. 246, 390 (1958). For the vapor viscosity we have used the recommended values from Y. S. Toulokian, S. C. Saxena, and P. Hestermans, Thermophysical Properties of Matter Vol. 11, IFI/ Plenum, New York (1979), for temperatures above 1.25 K, and the theoretical values of J. de Boer, Physica 10, 348 (1943) for lower temperatures. The density of the vapor was calculated from the saturated vapor pressure given in Donnely, Riegelmann, and Barenghi loc cit, under the assumption that the vapor can be treated as an ideal gas.

    Google Scholar 

  13. H. Wiechert, J. Phys. C 9, 553 (1976).

    Google Scholar 

  14. D. L. Cummings and D. L. Blackburn, J. Fluid Mech. 224, 395 (1991).

    Google Scholar 

  15. M. A. Weilert, D. L. Whitaker, H. J. Maris, and G. M. Seidel, J. Low Temp. Phys. 106, 101 (1997).

    Google Scholar 

  16. Lord Rayleigh, Phil. Mag. 14, 184 (1882).

    Google Scholar 

  17. R. Clift, J. R. Grace and M. E. Weber, Bubbles Drops and Particles, Academic Press, N.Y. (1978), Ch 10.

    Google Scholar 

  18. N. O. Young, J. S. Goldstein, and M. J. Block, J. Fluid Mech. 6, 350 (1959).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Whitaker, D.L., Kim, C., Vicente, C.L. et al. Theory of the Small Amplitude Shape Oscillations of a Helium-II Drop. Journal of Low Temperature Physics 114, 523–545 (1999). https://doi.org/10.1023/A:1021810422559

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1021810422559

Keywords

Navigation