Skip to main content
Log in

Imaging protein-protein interactions in living cells

  • Published:
Plant Molecular Biology Aims and scope Submit manuscript

Abstract

The complex organization of plant cells makes it likely that the molecular behaviour of proteins in the test tube and the cell is different. For this reason, it is essential though a challenge to study proteins in their natural environment. Several innovative microspectroscopic approaches provide such possibilities, combining the high spatial resolution of microscopy with spectroscopic techniques to obtain information about the dynamical behaviour of molecules. Methods to visualize interaction can be based on FRET (fluorescence detected resonance energy transfer), for example in fluorescence lifetime imaging microscopy (FLIM). Another method is based on fluorescence correlation spectroscopy (FCS) by which the diffusion rate of single molecules can be determined, giving insight into whether a protein is part of a larger complex or not. Here, both FRET- and FCS-based approaches to study protein-protein interactions in vivo are reviewed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Baird, G.S., Zacharias, D.A. and Tsien, R.Y. 2000. Biochemistry, mutagenesis, and oligomerization of DsRed, a red fluorescent protein from coral. Proc. Natl. Acad. Sci. USA 97: 11984–11989.

    Google Scholar 

  • Bastiaens, P.I.H. and Jovin, T.M. 1998. FRET microscopy. In J.E. Celis (Ed.) Cell Biology: A Laboratory Handbook, Vol. 3, Academic Press, New York, pp. 136–146.

    Google Scholar 

  • Bastiaens, P.I.H., van Hoek, A., Benen, J.A.E., Brochon, J.-C. and Visser, A.J.W.G. 1992. Conformational dynamics and intersubunit energy transfer in wild-type and mutant lipoamide dehydrogenase from Azotobacter vinelandii: a multidimensional time-resolved polarized fluorescence study. Biophys. J. 63: 839–853.

    Google Scholar 

  • Berland, K.M., So, P.T.C., Chen, Y., Mantulin, W.W. and Gratton, E. 1996. Scanning two-photon fluctuation correlation spectroscopy: particle counting measurements for detection of molecular aggregation. Biophys. J. 71: 410–420.

    Google Scholar 

  • Bonnet, G., Krichevsky, O. and Libchaber, A. 1998. Kinetics of conformational fluctuations in DNA hairpin-loops. Proc. Natl. Acad. Sci. USA 95: 8602–8606.

    Google Scholar 

  • Brown, C.M. and Petersen, N.O. 1998. An image correlation analysis of the distribution of clathrin associated adaptor protein (AP-2) at the plasma membrane. J. Cell Sci. 111: 271–281.

    Google Scholar 

  • Brown, C.M., Roth, M.G., Henis, Y.I. and Petersen, N.O. 1999. An internalization-component influenza hemagglutinin mutant causes the redistribution of AP-2 in clathrin free clusters. Biochemistry 38: 15166–15173.

    Google Scholar 

  • Clegg, R.M. 1996. Fluorescence resonance energy transfer. In: X.F. Wang and B. Herman (Eds.) Fluorescence Imaging Spectroscopy and Microscopy, Wiley, New York, pp. 179–252.

    Google Scholar 

  • Denk, W., Strickler, J.H. and Webb, W.W. 1990. Two-photon laser scanning fluorescence microscopy. Science 248: 73–76.

    Google Scholar 

  • Denk, W., Piston, D.W. and Webb, W.W. 1995. Two-photon molecular excitation in laser scanning microscopy. In: J. Pawley (Ed.) Handbook of Biological Confocal Microscopy, Plenum Press, New York, pp. 445–458.

    Google Scholar 

  • Egner, A., S. Jacobs and S. Hell. 2002. Fast 100-nm resolution three-dimensional microscope reveals structural plasticity of mitochondria in live yeast. Proc. Natl. Acad. Sci. USA 99: 3370–3376.

    Google Scholar 

  • Elson, E.L. and Magde, D. 1974. Fluorescence correlation spectroscopy. 1. Conceptual basis and theory. Biopolymers 13: 1–27.

    Google Scholar 

  • Fan, G.Y., Fujisaki, H., Miyawaki, A., Tsay, R.X., Tsien, R.Y. and Ellisman, M.H. 1999. Video-rate scanning two-photon excitation fluorescence microscopy and ratio imaging with cameleons. Biophys. J. 76: 2412–2420.

    Google Scholar 

  • Fire, E., Brown, C.M., Roth, M.G., Henis, Y.I. and Petersen, N.O. 1997. Partitioning of proteins into plasma membrane microdomains. Clustering of mutant influenza virus hemagglutinins into coated pits depends on the strength of the internalization signal. J. Biol. Chem. 272: 29538–29545.

    Google Scholar 

  • Földes-Papp, Z., Angerer, B., Thyberg, P, Hinz., M., Wennmalm, S., Ankenbauer, W., Seliger, H., Holmgren, A. and Rigler, R. 2001. Fluorescently labeled model DNA sequences for exonucleolytic sequencing. J. Biotechnol. 86: 203–224.

    Google Scholar 

  • Förster, T. 1948. Zwischenmolekulare Energiewanderung und Fluoreszenz. Ann. Physik 2: 57–75.

    Google Scholar 

  • Gadella, T.W.J. Jr. 1999. Fluorescence Lifetime Imaging Microscopy (FLIM): instrumentation and applications. In: W.T. Mason (Ed.) Fluorescent and Luminescent Probes for Biological Activity. A Practical Guide to Technology for Quantitative Real-Time Analysis, Academic Press, New York, pp. 467–479.

    Google Scholar 

  • Gadella, T.W.J., van Hoek, A. and Visser, A.J.W.G. 1997. Construction and characterization of a frequency-domain fluorescence lifetime imaging microscopy system. J. Fluoresc. 7: 35–43.

    Google Scholar 

  • Gadella, T.W.J. Jr., van der Krogt, G.N.M. and Bisseling, T. 1999. GFP-based FRET microscopy in living plant cells. Trends Plant Sci. 4: 287–291.

    Google Scholar 

  • Gautier, I., Tramier, M., Durieux, C., Coppey, J., Pansu, R.B., Nicolas, J.-C., Kemnitz, K., and Coppey-Moisan, M. 2001. Homo-FRET microscopy in living cells to measure monomer-dimer transition of GFP-tagged proteins. Biophys. J. 80: 3000–3008.

    Google Scholar 

  • Goedhart, J. and Gadella, T.W.J. Jr. 2000. Advanced fluorescence microspectroscopic methods for the study of single living root hairs. In: R.W. Ridge and A.M.C. Emons (Eds.) Root Hairs: Cell and Molecular Biology, Springer-Verlag, Tokyo, pp. 65–94.

    Google Scholar 

  • Goedhart, J. Hink, M.A., Visser, A.J.W.G., Bisseling, T. and Gadella, T.W.J. 2000. In vivo fluorescence correlation microscopy (FCM) reveals accumulation and immobilization of Nod factors in root hair cell walls. Plant J. 20: 109–119.

    Google Scholar 

  • Griffin, B.A., Adams, S.R. and Tsien R.Y. 1998. Specific covalent labeling of recombinant protein molecules inside living cells. Science 281: 269–272.

    Google Scholar 

  • Haselhoff, J., Siemering, K.R., Prasher, D.C. and Hodge, S. 1997. Removal of a cryptic intron and subcellular localization of green fluorescent protein are required to mark Arabidopsis plants brightly. Proc. Natl. Acad. Sci. USA 94: 2122–2127.

    Google Scholar 

  • Herman, B. 1989. Resonance energy transfer microscopy. Meth. Cell Biol. 30: 219–243.

    Google Scholar 

  • Hink, M.A., Griep, R.A., Borst, J.W., van Hoek, A., Eppink, M.H.M., Schots, A. and Visser, A.J.W.G. 2000. Structural dynamics of green fluorescent protein alone and fused with a single chain Fv protein. J. Biol. Chem. 275: 17556–17560.

    Google Scholar 

  • Immink, R.G.H., Gadella, T.W.J. Jr., Ferraro, S., Busscher, M. and Angenent, G.C. 2002. Analysis of MADS box protein-protein interactions in living plant cells. Proc. Natl. Acad. Sci. USA 99: 2416–2421.

    Google Scholar 

  • Kettling, U., Koltermann, A., Schwille, P. and Eigen, M. 1998. Real-time enzyme kinetics monitored by dual-color fluorescence cross-correlation spectroscopy. Proc. Natl. Acad. Sci. USA 95: 1416–1420.

    Google Scholar 

  • Köhler, R.H., Schwille, P., Webb, W.W. and Hanson, M.R. 2000. Active protein transport through plastid tubules: velocity quantified by fluorescence correlation spectroscopy. J. Cell Sci. 113: 3921–3930.

    Google Scholar 

  • Koltermann, A., Kettling, U., Bieschke, J., Winkler, T. and Eigen, M. 1998. Rapid assay processing by integration of dual-color fluorescence cross-correlation spectroscopy: high throughput screening for enzyme activity. Proc. Natl. Acad. Sci. USA 95: 1421–1426.

    Google Scholar 

  • Magde, D., Elson, E.L. and Webb, W.W. 1972. Thermodynamic fluctuations in a reacting system: measurements by fluorescence correlation spectroscopy. Phys. Rev. Lett. 29: 705–708.

    Google Scholar 

  • Magde, D., Elson, E.L. and Webb, W.W. 1974. Fluorescence correlation spectroscopy. 2. An experimental realization. Biopolymers 13: 29–61.

    Google Scholar 

  • Más, P., Devlin., P.F., Panda, S. and Kay, S.A. 2000. Functional interaction of phytochrome B and cryptochrome 2. Nature 408: 207–211.

    Google Scholar 

  • Miyawaki, A., Llopis, J., Heim, R., McCaffery, J.M., Adams, J.A., Ikurak, M. and Tsien, R.Y. 1997. Fluorescent indicators for Ca2+ based on green fluorescent proteins and calmodulin. Nature 388: 882–887.

    Google Scholar 

  • Miyawaki, A., Griesbeck, O., Heim, R. and Tsien, R.Y. 1999. Dynamic and quantitative Ca2+ measurements using improved cameleons. Proc. Natl. Acad. Sci. USA 96: 2135–2140.

    Google Scholar 

  • Matz, M.V., Fradkov, A.F., Labas, Y.A., Savitsky, A.P., Zaraisky, A.G., Markelov, M.L. and Lukyanov S.A. 1999. Fluorescent proteins from nonbioluminescent Anthozoa species. Nature Biotechnol. 17: 969–973.

    Google Scholar 

  • Meseth, U., Wohland, T., Rigler, R. and Vogel, H. 1999. Resolution of fluorescence correlation measurements. Biophys. J. 76: 1619–1631.

    Google Scholar 

  • Petersen, N.O., Höddelius, P.L., Wiseman, P.W., Seger, O. and Magnusson, K.E. 1993. Quantitation of membrane receptor distributions by image correlation spectroscopy: concept and application. Biophys. J. 65: 1135–1146.

    Google Scholar 

  • Piston, D.W. 1999. Imaging living cells and tissues by two-photon excitation microscopy. Trends Cell Biol. 9: 66–69.

    Google Scholar 

  • Pramanik, A., Thyberg, P. and Rigler, R. 2000. Molecular interactions of peptide with phospholipid vesicle membranes as studied by fluorescence correlation spectroscopy Chem. Phys. Lipids 104: 35–47.

    Google Scholar 

  • Rasmusson, B.J., Flanagan, T.D., Turco, S.J., Epand, R.M. and Petersen, N.O. 1998. Fusion of Sendai virus and individual host cells and inhibition of fusion by lipophosphoglycan measured with image correlation spectroscopy. Biochim. Biophys. Acta 1404: 338–352.

    Google Scholar 

  • Rauer, B., Neumann, E., Widengren, J. and Rigler, R. 1996. Fluorescence correlation spectrometry of the interaction kinetics of tetramethylrhodamin ?-bungarotoxin with Torpedo californica acetylcholine receptor. Biophys. Chem. 58: 3–12.

    Google Scholar 

  • Rigler, R. and Elson, E.S. (Eds.). 2000. Fluorescence Correlation Spectroscopy. Theory and Applications. Springer, New York, 487 pp.

    Google Scholar 

  • Rigler, R., Földes-Papp, Z., Meyer-Almes, F. J., Sammet, C., Volcker, M. and Schnetz, A. 1999. Fluorescence cross-correlation: a new concept for polymerase chain reaction. J. Biot. 63: 97–109.

    Google Scholar 

  • Rippe, K. 2000. Simultaneous binding of two DNA duplexes to the NtrC-enhancer complex studied by two-color fluorescence crosscorrelation spectroscopy Biochemistry 39: 2131–2139.

    Google Scholar 

  • Schwille, P., MeyerAlmes, F. J. and Rigler, R. 1997. Dual-color fluorescence cross-correlation spectroscopy for multicomponent diffusional analysis in solution. Biophys. J. 72: 1878–1886.

    Google Scholar 

  • Selvin, P.R. 2000. The renaissance of fluorescence energy transfer. Nature Struct. Biol. 7: 730–734.

    Google Scholar 

  • Shah, K., Gadella, T.W.J. Jr., van Erp, H., Hecht, V. and de Vries, S.C. 2001. Subcellular localization and oligomerization of the Arabidopsis thaliana somatic embryogenesis receptor kinase 1 protein. J. Mol. Biol. 309: 641–655.

    Google Scholar 

  • Squirrel, J.M., Wokosin, D.L., White, J.G. and Bavister, B.D. 1999. Long-term two-photon fluorescence imaging of mammalian embryos without compromising viability. Nature Biotechnol. 17: 763–767.

    Google Scholar 

  • Srivastava, M. and Petersen, N.O. 1996. Image cross-correlation spectroscopy: a new experimental biophysical approach to measurement of slow diffusion of fluorescent molecules. Meth. Cell Sci. 18: 47–54.

    Google Scholar 

  • Straub, M. and Hell, S.W. 1998. Fluorescence lifetime threedimensional microscopy with picosecond precision using a multifocal multiphoton microscope. Appl. Phys. Lett. 73: 1760–1771.

    Google Scholar 

  • Straub, M., Lodemann, P., Holroyd, P., Jahn, R., and Hell, S.W. 2000. Live cell imaging by multifocal multiphoton microscopy. Eur. J. Cell Biol. 79: 726–734.

    Google Scholar 

  • Stryer, L. 1978. Fluorescence energy transfer as a spectroscopic ruler. Annu. Rev. Biochem. 47: 819–846.

    Google Scholar 

  • Sytsma, J., J.M. Vroom., C.J. de Grauw and H.C. Gerritsen. 1998. Time gated fluorescence lifetime imaging and microvolume spectroscopy using two-photon excitation. J. Microsc. 191: 39–51.

    Google Scholar 

  • Trier, U., Olah, Z., Kleuser, B. and Schäfer-Korting, M. 1999. Fusion of the binding domain of Raf-1 kinase with green fluorescent protein for activated Ras detection by fluorescence correlation spectroscopy. Pharmazie 54: 263–268.

    Google Scholar 

  • Tsien, R.Y. 1998. The green fluorescent protein. Annu. Rev. Biochem. 67: 509–544.

    Google Scholar 

  • Verveer, P.J., Wouters, F.S., Reynolds, A.R. and Bastiaens, P.I.H. 2000a. Quantitative imaging of lateral ErbB1 receptor signal propagation in the plasma membrane. Science 290: 1567–1570.

    Google Scholar 

  • Verveer, P.J., Squire, A. and Bastiaens, P.I.H. 2000b. Global analysis of fluorescence lifetime imaging microscopy data. Biophys. J. 78: 2127–2137.

    Google Scholar 

  • Visser, A.J.W.G. and Hink, M.A. 1999. New perspectives of fluorescence correlation spectroscopy. J. Fluor. 9: 81–87.

    Google Scholar 

  • Wiseman, P.W. and Petersen, N.O. 1999. Image correlation spectroscopy. II. Optimization for ultrasensitive detection of preexisting platelet-derived growth factor-? receptor oligomers in intact cells. Biophys. J. 76: 963–977.

    Google Scholar 

  • Wiseman, P.W., Squier, J.A., Ellisman, M.H. and Wilson, K.R. 2000. Two-photon image correlation spectroscopy and image cross-correlation spectroscopy. J. Microsc. 200: 14–25.

    Google Scholar 

  • Wohland, T., Friedrich, K., Hovius, R. and Vogel, H. 1999. Study of ligand-receptor interactions by fluorescence correlation spectroscopy with different fluorophores: evidence that the homopentameric 5-hydroxytryptamine type 3As receptor binds only one ligand. Biochemistry 38: 8671–8681.

    Google Scholar 

  • Wouters, F.S., Verveer, P.J. and Bastiaens, P.I.H. 2001. Imaging biochemistry inside cells. Trends Cell Biol. 11: 203–211.

    Google Scholar 

  • Wu, P. and Brand, L. 1994. Resonance energy transfer: methods and applications. Ann. Biochem. 218: 1–13.

    Google Scholar 

  • Xia, Z. and Liu, Y. 2001. Reliable and global measurement of fluorescence resonance energy transfer using fluorescence microscopes. Biophys. J. 72: 2395–2402.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hink, M.A., Bisseling, T. & Visser, A.J. Imaging protein-protein interactions in living cells. Plant Mol Biol 50, 871–883 (2002). https://doi.org/10.1023/A:1021282619035

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1021282619035

Navigation