Skip to main content
Log in

Assessment of genetic diversity among wheat (Triticum aestivum L.) cultivars from a range of localities across Pakistan using random amplified polymorphic DNA (RAPD) analysis

  • Published:
Euphytica Aims and scope Submit manuscript

Abstract

Genetic diversity among 20 wheat genotypes/cultivars from diverse locations of Pakistan was studied using random amplified polymorphic DNA (RAPD) analysis. A total of 445 DNA fragments were amplified with50 random decamer primers 64.38% of which were polymorphic. Genetic similarity matrix based on Nei & Li's (1979) index detected coefficients ranging from 75.60% to 92.74%. These coefficients were used to construct a dendrogram using unweighted pair group of arithmetic means (UPGMA). The wheat genotypes were clustered into one major group (A) and two small groups (B and C). The most distant genotype in the dendrogram was PARC-1 that was 75.60% to 84.94% genetically similar with the other genotypes and clustered with PARC-3 which formed a group distantly related with the other clusters. Moreover, most of the wheat genotypes developed from the same breeding centre clustered in one group. It has been clearly shown that most of the cultivars except PARC-1possessed narrow genetic background. The information would be helpful for future genome mapping programs as well as for the application of intellectual breeder rights in the country. The study will also work as indicator for wheat breeders to evolve varieties with diverse genetic background to achieve sustainability in wheat production in the country.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Bedo, Z., L. Szunics, L. Lang, L. Szunics, O. Veisz, I. Karsai, G. Vida, P. Szucs, A. Juhasz, M. Gal, S. Bencze, M. Megyeri, K. Puskas & C. Horvath, 2000. Genetic diversity in durum wheat. Annl Wheat Newsl, Items from Hungary 46.

  • Bligh, H.F.J., N.W. Blackhall, K.J. Edwards & A.M. McClung, 1999. Using amplified fragment length polymorphisms and simple sequence length polymorphisms to identify cultivars of brown and white milled rice. Crop Sci 39: 1715–1721.

    Article  CAS  Google Scholar 

  • Cao, W.G., P.S.G. Hucl & R.N. Chibbar, 1998. Genetic diversity within spelta and macha wheats based on RAPD analysis. Euphytica 104: 181–189.

    Article  Google Scholar 

  • Czaplicki, A., P. Borsuk & I. Moraczewski, 2000. Molecular methods of identification of wheat varieties. J Biomol Struc Dynamc 17(6): 2.

    Google Scholar 

  • Demeke, T., D.R. Lynch, L.M. Kawchuk, G.C. Kozub & J.D. Armstrong, 1996. Genetic diversity of potato determined by random amplified polymorphic DNA analysis. Plant Cell Rep 15: 662–667.

    Article  CAS  Google Scholar 

  • Doyle, J.J. & J.L. Doyle, 1990. Isolation of plant DNA from fresh tissue. Focus 12: 13–15.

    Google Scholar 

  • Erlich, A., D. Gelfand & J.J. Sninsky, 1991. Recent advances in polymerase chain reaction. Science 252: 1643.

    PubMed  CAS  Google Scholar 

  • Esbroeck, V.G.A., D.T. Bowman, D.S. Calhoun & O.L. May, 1998. Changes in the genetic diversity in cotton in the USA from 1970 to 1995. Crop Sci 38: 33–37.

    Article  Google Scholar 

  • Fouilloux, G. & H. Bannerot, 1988. Selection methods in the common bean (Phaseolous vulgaris). In: P. Gepts (Ed.), Genetic Resources of Phaseolous Beans, pp. 503–542. Kluwer, Dordrecht.

    Google Scholar 

  • Garret, K.A. & C.C. Mundt, 1999. Epidemiology in mixed host populations. Phytopathology 89: 984–990.

    Google Scholar 

  • Gepts, P., 1993. The use of molecular and biomolecular markers in crop-evaluation studies. In: M.K. Hecht (Ed.), Evolutionary Biology, Vol. 27, pp. 51–94. Plenum Press, New York.

    Google Scholar 

  • Gerashchenkov, G.A., V.I. Gorbunova, L.D. Zarianova, N.A. Rozhnova & V.A. Bal, 2000. RAPD-PCR analysis of the variability of spring common wheat cultivar genomes and their androclinal double haploid form. Genetika 36(8): 1081–1087.

    PubMed  CAS  Google Scholar 

  • Gupta, P.K., H.S. Balyan, M. Parsad, R.K. Varshney & J.K. Roy, 2000. Molecular markers for gene tagging and genetic diversity studies at Meerut. Annl Wheat Newsl, Items from India 46.

  • Hu, J. & C.F. Quirose, 1991. Identification of broccoli and cauli-flower cultivars with RAPD markers. Plant Cell Rep 10: 505–511.

    Article  Google Scholar 

  • Iqbal, M.J. & A.L. Rayburn, 1994. Stability of RAPD markers for determining cultivar-specific DNA profiles in rye (Secale cereale). Euphytica 75: 215–220.

    Article  CAS  Google Scholar 

  • Iqbal, M.J., N. Aziz, N.A. Saeed, Y. Zafar & K.A. Malik, 1997. Genetic diversity evaluation of some elite cotton varieties by RAPD analysis. Theor Appl Genet 94: 139–144.

    Article  CAS  PubMed  Google Scholar 

  • Karp, A., S. Kresovich, K.V. Bhat, W.G. Ayad & T. Hodgkin, 1997. Molecular tools in plant genetic resources conservation: a guide to the technologies. In: IPGRI Technical Bull, No. 2. International Plant Genetic Resources Institute, Rome, Italy.

    Google Scholar 

  • Kelly, J.D., R. Stavely, P. Millas, L. Afanador & L.D. Haley, 1993. Pyramiding rust resistance genes using RAPD markers. Annu Rep Bean Improv Coop 36: 166–167.

    Google Scholar 

  • Klein-Lankhorst, R.M., A. Vermunt, R. Wade, T. Liharska & P. Zebel, 1991. Isolation of molecular markers for tomato (Lycopersicum esculantum) using random amplified polymorphic DNA (RAPD). Theor Appl Genet 83: 108–114.

    Article  CAS  Google Scholar 

  • Malik, T.A., A. Price & D. Wright, 1996. Identification of wheat genotypes by random amplified polymorphic DNA technique. In: Agricultural Biotechnology, Proc 1st Biotech Symp, pp. 81–87, Univ Agri, Faisalabad, Pakistan.

    Google Scholar 

  • Mann, C., 1997. Reseeding the green revolution. Science 277: 1038–1042.

    Article  CAS  Google Scholar 

  • Martin, G.B., T.G.K. William & S.D. Tanksley, 1991. Rapid identification of markers linked to a Pseudomones resistance genes in tomato by using random primers and near-isogenic lines. Proc Natl Acad Sci 88: 2336–2340.

    Article  PubMed  CAS  Google Scholar 

  • Messmer, M.M., A.E. Melchinger, J. Boppenmaier, R.G. Herrmann & E. Brunklaus-Jung, 1992. RFLP analyses of early-maturing European maize germplasm. Theor Appl Genet 83: 1003–1112.

    Article  CAS  Google Scholar 

  • Miller, P.J., D.E. Parfitt & S.A. Weinbaum, 1989. Outcrossing in peach. Hort. Science 24: 359–360.

    Google Scholar 

  • Mullis, K.B., 1990. Unusual origin of polymerase chain reaction. Scientific American 262: 56–65.

    Article  PubMed  CAS  Google Scholar 

  • Nei, N. & W. Li, 1979. Mathematical model for studying genetic variation in terms of restriction endonuleases. Proc Natl Acad Sci 76: 5269–5273.

    Article  PubMed  CAS  Google Scholar 

  • Nybom, H., B.A. Schaal & S.H. Rogstad, 1989. DNA fingerprints can distinguish cultivars of black berries and raspberries. Acta Hortica 262: 305–310.

    Google Scholar 

  • Porter, W.M. & D.H. Smith, 1982. Detection of identification errors in germplasm collections. Crop Sci 22: 701–703.

    Article  Google Scholar 

  • Rafalski, J.A., S.V. Tingly & J.G.K. Williams, 1991. RAPD markers-a new technology for genetic mapping and plant breeding. Agric Biotech News Info 3: 645–648.

    Google Scholar 

  • Sambrook, J., E.F. Fritsch & T. Maniatis, 1989. Molecular Cloning: A Laboratory Course Manual. Cold Spring Harbor Laboratory Press, New York.

    Google Scholar 

  • Sneath, P. & R. Sokal, 1973. Numerical Taxonomy. Freeman, San Francisco.

    Google Scholar 

  • Sun, Q., Z. Ni, Z. Liu, J. Gao & T. Huang, 1998. Genetic diversity in elite wheat cultivars revealed by random amplified polymorphic DNA. Annl. Wheat Newsl Items from China 44.

  • Tanksley, S.D., 1983. Molecular markers in plant breeding. Plant Mol Biol Rep 1: 3.

    CAS  Google Scholar 

  • Tanksley, S.D., N.D. Young, A.H. Paterson & M.W. Bonierbale, 1989. RFLP mapping in plant breeding: New tools for old science. Biotechnology 7: 257.

    Article  CAS  Google Scholar 

  • Tillman, D., 1998. The greening of the green revolution. Nature 396: 211–212.

    Article  CAS  Google Scholar 

  • Welsh, J. & M. McClelland, 1990. Fingerprinting genomes using PCR with arbitrary primers. Nucl Acids Res 18: 7213–7218.

    PubMed  CAS  Google Scholar 

  • Williams, J.G.K., A.R. Kubelik, K.J. Livak, J.A. Rafalski & S.V. Tingey, 1990. DNA polymorphisms amplified by arbitrary primers are useful as genetic markers. Nucl Acids Res 18: 6531–6535.

    PubMed  CAS  Google Scholar 

  • Yuejin, W. & H. Lin, 2000. Genetics diversity of salt tolerant germplasm in wheat by RAPD. Plant and Animal Genome VIII Conference.

  • Zhu, Y., H. Chen, J. Fan, Y. Wang, Y. Li, J. Chen, J. Fan, S. Yang, L. Hu, H. Leung, T.W. Mew, P.S. Teng, Z. Wang & C.C. Mundt, 2000. Genetic diversity and disease control in rice. Nature 406: 718–722.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Shahid Mukhtar, M., Rahmanw, Mu. & Zafar, Y. Assessment of genetic diversity among wheat (Triticum aestivum L.) cultivars from a range of localities across Pakistan using random amplified polymorphic DNA (RAPD) analysis. Euphytica 128, 417–425 (2002). https://doi.org/10.1023/A:1021261811454

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1021261811454

Navigation