Skip to main content
Log in

Ethanol and Ambrosia Beetles in Douglas Fir Logs Exposed or Protected from Rain

  • Published:
Journal of Chemical Ecology Aims and scope Submit manuscript

Abstract

Logs from the base of Douglas fir (Pseudotsuga menziesii) trees cut in October 1993 were randomly assigned to one of three treatment groups: (1) wet logs—cut from the fallen tree and left exposed to rain, (2) dry logs—cut from the fallen tree, placed on blocks, and protected from rain under a plastic tent, and (3) crown logs—left attached to the fallen tree with its branches intact and exposed to rain. The following May, ethanol concentrations were highest in the phloem and sapwood of wet logs (0.24 and 0.35 μmol/g fresh wt, respectively). Ethanol concentrations in tissues from dry and crown logs were similar to each other (ranging from 0.002 to 0.03 μmol/g fresh wt), but were significantly lower than in wet logs. It appears that rain absorbed by the outer bark of wet logs creates a barrier to gas exchange between living tissues and the atmosphere, which facilitates the development of hypoxic conditions necessary for ethanol synthesis and accumulation. Branches on crown logs exposed to rain help maintain low ethanol concentrations in the log tissues; we discuss several potential mechanisms to explain this response. By early September, the densities of Gnathothrichus spp. gallery entrance holes were high on wet logs (21.5/m2) and low on dry (2.5/m2) and crown logs (5.8/m2), indicating their preference for logs with higher ethanol concentrations. Protecting logs from rain will significantly reduce ethanol concentrations and the density of ambrosia beetle galleries. Leaving branches attached to logs will produce similar results, but its effectiveness may vary depending on the environmental conditions. Host selection by secondary scolytid beetles that use ethanol as a kairomone can be manipulated and possibly managed by controlling the production of ethanol in the host resource.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

REFERENCES

  • Bedard, W. D., Ferrell, G. T., Whitmore, M. C., and Robertson, A. S. 1990. Trapping evaluation of beetle vectors of black stain root disease in Douglas fir. Can. Entomol. 122:459–468.

    Google Scholar 

  • Blakeney, A. B., and Mutton, L. L. 1980. A simple colorimetric method for the determination of sugars in fruit and vegetables. J. Sci. Food Agric. 31:889–897.

    Google Scholar 

  • Borden, J. H., Lindgren, B. S., and Chong, L. 1980. Ethanol and α-pinene as synergists for the aggregation pheromones of two Gnathotrichus spp. Can. J. For. Res. 10:290–292.

    Google Scholar 

  • Cade, S. C., Hrutfiord, B. F., and Gara, R. I. 1970. Identification of a primary attractant for Gnathotrichus sulcatus isolated from western hemlock logs. J. Econ. Entomol. 63:1014–1015.

    Google Scholar 

  • Chapman, J. A., and Dyer, E. D. A. 1969. Characteristics of Douglas-fir logs in relation to ambrosia beetle attack. For. Sci. 15:95–101.

    Google Scholar 

  • Chapman, J. A., Farris, S. H., and Kinghorn, J. M. 1963. Douglas-fir sapwood starch in relation to log attack by the ambrosia beetle, Trypodendron. For. Sic. 9:430–439.

    Google Scholar 

  • ChÉnier, J. V. R., and PhilogÈne, B. J. R. 1989. Field responses of certain forest Coleoptera to conifer monoterpenes and ethanol. J. Chem. Ecol. 15:1729–1745.

    Google Scholar 

  • Ciesla, W. M. 1988. Pine bark beetles: A new pest management challenge for Chilean foresters. J. For. 86:27–31.

    Google Scholar 

  • Haissig, B. E., and Dickson, R. E. 1979. Starch measurements in plant tissue using enzymatic hydrolysis. Physiol. Plant. 47:151–157.

    Google Scholar 

  • Harmon, M. E., and Sexton, J. 1995. Water balance of conifer logs in early stages of decomposition. Plant Soil 172:141–152.

    Google Scholar 

  • Harmon, M. E., Franklin, J. F., Swanson, F. J., Sollins, P., Gregory, S. V., Lattin, J. D., Anderson, N. H., Cline, S. P., Aumen, N. G., Sedell, J. R., Lienkaemper, G. W., Cromack, K., Jr., and Cummins, K. W. 1986. Ecology of coarse woody debris in temperate ecosystems. Adv. Ecol. Res. 15:133–302.

    Google Scholar 

  • Harrington, T. C., Cobb, F. W., Jr., and Lownsbery, J. W. 1985. Activity of Hylastes nigrinus, a vector of Verticicladiella wageneri, in thinned stands of Douglas-fir. Can. J. For. Res. 15:519–523.

    Google Scholar 

  • Harry, D. E., and Kimmerer, T. W. 1991. Molecular genetics and physiology of alcohol dehydrogenase in woody plants. For. Ecol. Manage. 43:251–272.

    Google Scholar 

  • Jayasekera, G. A. U., Reid, D. M., and Yeung, E. C. 1990. Fates of ethanol produced during flooding of sunflower roots. Can. J. Bot. 68:2408–2414.

    Google Scholar 

  • Kelsey, R. G. 1994a. Ethanol synthesis in Douglas-fir logs felled in November, January, and March and its relationship to ambrosia beetle attack. Can. J. For Res. 24:2096–2104.

    Google Scholar 

  • Kelsey, R. G. 1994b. Ethanol and ambrosia beetles in Douglas fir logs with and without branches. J. Chem. Ecol. 20:3307–3319.

    Google Scholar 

  • Kelsey, R. G. 1996. Anaerobic induced ethanol synthesis in the stems of greenhouse-grown conifer seedlings. Trees 10:183–188.

    Google Scholar 

  • Kelsey, R. G., and Joseph, G. 1997. Ambrosia beetle host selection among logs of Douglas fir, western hemlock, and western red cedar with different ethanol and α-pinene concentrations. J. Chem. Ecol. 23:1035–1051.

    Google Scholar 

  • Kelsey, R. G., and Joseph, G. 1998. Ethanol in Douglas-fir with black-stain root disease (Leptographium wageneri). Can. J. For. Res. 28:1207–1212.

    Google Scholar 

  • Kelsey, R. G., and Joseph, G. 1999. Ethanol and water in Pseudotsuga menziesii and Pinus ponderosa stumps. J. Chem. Ecol. 25:2779–2792.

    Google Scholar 

  • Kelsey, R. G., Joseph, G., and Gerson, E. A. 1998. Ethanol synthesis, nitrogen, carbohydrates, and growth in tissues from nitrogen fertilized Pseudotsuga menziesii (Mirb.) Franco and Pinus ponderosa Dougl. ex Laws. seedlings. Trees 13:103–111.

    Google Scholar 

  • Kimmerer, T. W., and Stringer, M. A. 1988. Alcohol dehydrogenase and ethanol in the stems of trees. Plant Physiol. 87:693–697.

    Google Scholar 

  • Kinghorn, J. M. 1957. Two practical methods of identifying types of ambrosia beetle damage. J. Econ. Entomol. 50:213.

    Google Scholar 

  • Klimetzek, D., KÖhler, J., VitÉ, J. P., and Kohnle, U. 1986. Dosage response to ethanol mediates host selection by “secondary” bark beetles. Naturwissenschaften 73:270–272.

    Google Scholar 

  • LindelÖw, Å., Eidmann, H. H., and Nordenhem, H. 1993. Response on the ground of bark beetle and weevil species colonizing conifer stumps and roots to terpenes and ethanol. J. Chem. Ecol. 19:1393–1403.

    Google Scholar 

  • Liu, Y.-B., and McLean, J. A. 1989. Field evaluation of responses of Gnathotrichus sulcatus and G. retusus (Coleoptera: Scolytidae) to semiochemicals. J. Econ. Entomol. 82:1687–1690.

    Google Scholar 

  • MacDonald, R. C., and Kimmerer, T. W. 1991. Ethanol in the stems of trees. Physiol. Plant. 82:582–588.

    Google Scholar 

  • MacDonald, R. C., and Kimmerer, T. W. 1993. Metabolism of transpired ethanol by eastern cottonwood (Populus deltoides Bartr.). Plant Physiol. 102:173–179.

    Google Scholar 

  • McLean, J. A. 1985. Ambrosia beetles: A multimillion dollar degrade problem of sawlogs in coastal British Columbia. For. Chron. 61:295–298.

    Google Scholar 

  • Moeck, H. A. 1970. Ethanol as the primary attractant for the ambrosia beetle Trypodendron lineatum (Coleoptera: Scolytidae). Can. Entomol. 102:985–995.

    Google Scholar 

  • Nevill, R. J., and Alexander, S. A. 1992a. Transmission of Leptographium procerum to eastern white pine by Hylobius pales and Pissodes nemorensis (Coleoptera: Curculionidae). Plant Dis. 76:307–310.

    Google Scholar 

  • Nevill, R. J., and Alexander, S. A. 1992b. Distribution of Hylobius pales and Pissodes nemorensis (Coleoptera: Curculionidae) within christmas tree plantations with procerum root disease. Environ. Entomol. 21:1077–1085.

    Google Scholar 

  • Nevill, R. J., and Alexander, S. A. 1992c. Root-and stem-colonizing insects recovered from eastern white pines with procerum root disease. Can. J. For Res. 22:1712–1716.

    Google Scholar 

  • Nordlander, G. 1987. A method for trapping Hylobius abietis (L.) with a standardized bait and its potential for forecasting seedling damage. Scand. J. For. Res. 2:199–213.

    Google Scholar 

  • Nordlander, G., Eidmann, H. H., Jacobsson, U., Nordenhem, H., and SjÖdin, K. 1986. Orientation of the pine weevil Hylobius abietis to underground sources of host volatiles. Entomol. Exp. Appl. 41:91–100.

    Google Scholar 

  • Petersen, R. G. 1985. Design and Analysis of Experiments. Marcel Dekker, New York.

    Google Scholar 

  • Phillips, T. W. 1990. Responses of Hylastes salebrosus to turpentine, ethanol, and pheromones of Dendroctonus (Coleoptera: Scolytidae). Fla. Entomol. 73:286–292.

    Google Scholar 

  • Pitman, G. B., Hedden, R. L., and Gara, R. I. 1975. Synergistic effects of ethyl alcohol on the aggregation of Dendroctonus pseudotsugae. Z. Angew. Entomol. 78:203–208.

    Google Scholar 

  • Raffa, K. F., and Hunt, D. W. A. 1988. Use of baited pitfall traps for monitoring pales weevil, Hylobius pales (Coleoptera: Curculionidae). Great Lakes Entomol. 21:123–125.

    Google Scholar 

  • Rose, R., Rose, C. L., Omi, S. K., Forry, K. R., Durall, D. M., and Bigg, W. L. 1991. Starch determination by perchloric acid vs enzymes: Evaluating the accuracy and precision of six colorimetric methods. J. Agric. Food Chem. 39:2–11.

    Google Scholar 

  • Salom, S. M., and McLean, J. A. 1990. Flight and landing behavior of Trypodendron lineatum (Coleoptera: Scolytidae) in response to different semiochemicals. J. Chem. Ecol. 16:2589–2604.

    Google Scholar 

  • SAS Institute. 1989. SAS/STAT User's Guide, Version 6, 4th ed., Vol. 2. SAS Institute, Inc., Cary, North Carolina.

    Google Scholar 

  • SAS Institute. 1996. SAS/STAT Software: Changes and Enhancements Through Release 6.11. SAS Institute, Inc., Cary, North Carolina.

    Google Scholar 

  • Schowalter, T. D., and Filip, G. M. 1993. Bark beetle-pathogen-conifer interactions: An overview, pp. 3–19, in T. D. Schowalter and G. M. Filip (eds.). Beetle-Pathogen Interactions in Conifer Forests. Academic Press, San Diego, California.

    Google Scholar 

  • Schowalter, T. D., Caldwell, B. A., Carpenter, S. E., Griffiths, R. P., Harmon, M. E., Ingham, E. R., Kelsey, R. G., Lattin, J. D., and Moldenke, A. R. 1992. Decomposition of fallen trees: effects of initial conditions and hetertroph colonization rates, pp. 373–383, in K. P. Singh and J. S. Singh (eds.). Tropical Ecosystems: Ecology and Management. Wiley Eastern Ltd., New Delhi.

    Google Scholar 

  • Schroeder, L. M., and LindelÖw, Å. 1989. Attraction of scolytids and associated beetles by different absolute amounts and proportions of α-pinene and ethanol. J. Chem. Ecol. 15:807–817.

    Google Scholar 

  • Shore, T. L., and McLean, J. A. 1983. A further evaluation of the interactions between the pheromones and two host kairomones of the ambrosia beetles Trypodendron lineatum and Gnathotrichus sulcatus (Coleoptera: Scolytidae). Can. Entomol. 115:1–5.

    Google Scholar 

  • SjÖdin, K., Schroeder, L. M., Eidmann, H. H., Norin, T., and Wold, S. 1989. Attack rates of scolytids and composition of volatile wood constituents in healthy and mechanically weakened pine trees. Scand. J. For Res. 4:379–391.

    Google Scholar 

  • Sprugel, D. G., Ryan, M. G., Brooks, J. R., Vogt, K. A., and Martin, T. A. 1995. Respiration from the organ level to the stand, pp. 255–299, in W. K. Smith and T. M. Hinckley (eds.). Resource Physiology of Conifers: Acquisition, Allocation, and Utilization, Academic Press, San Diego, California.

    Google Scholar 

  • Tilles, D. A., SjÖdin, K., Nordlander, G., and Eidmann, H. H. 1986. Synergism between ethanol and conifer host volatiles as attractants for the pine weevil, Hylobius abietis (L.) (Coleoptera: Curculionidae). J. Econ. Entomol. 79:970–973.

    Google Scholar 

  • Tyree, M. T., and Sperry, J. S. 1989. Vulnerability of xylem to cavitation and embolism. Annu. Rev. Plant Physiol. Mol. Biol. 40:19–38.

    Google Scholar 

  • von Sydow, F., and Birgersson, G. 1997. Conifer stump condition and pine weevil (Hylobius abietis) reproduction. Can. J. For. Res. 27:1254–1262.

    Google Scholar 

  • Witcosky, J. J., Schowalter, T. D., and Hansen, E. M. 1986a. Hylastes nigrinus (Coleoptera: Scolytidae), Pissodes fasciatus, and Steremnius carinatus (Coleoptera: Curculionidae) as vectors of black-stain root disease of Douglas-fir. Environ. Entomol. 15:1090–1095.

    Google Scholar 

  • Witcosky, J. J., Schowalter, T. D., and Hansen, E. M. 1986b. The influence of time of precommercial thinning on the colonization of Douglas-fir by three species of root-colonizing insects. Can. J. For. Res. 16:745–749.

    Google Scholar 

  • Witcosky, J. J., Schowalter, T. D., and Hansen, E. M. 1987. Host-derived attractants for the beetles Hylastes nigrinus (Coleoptera: Scolytidae) and Steremnius carinatus (Coleoptera: Curculionidae). Environ. Entomol. 16:1310–1313.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kelsey, R.G., Joseph, G. Ethanol and Ambrosia Beetles in Douglas Fir Logs Exposed or Protected from Rain. J Chem Ecol 25, 2793–2809 (1999). https://doi.org/10.1023/A:1020859726152

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1020859726152

Navigation