Skip to main content
Log in

The significance of inter- and intraspecific variation in bacterivorous and herbivorous protists

  • Published:
Antonie van Leeuwenhoek Aims and scope Submit manuscript

Abstract

This paper reviews the emerging evidence on the significance of inter- and intraspecific variation in the feeding behaviour of aquatic protists. Small heterotrophic nanoflagellates (HNF) have been identified as the primary bacterial consumers in most aquatic environments. Recent research using novel techniques such as flow cytometry and high resolution video microscopy revealed that their feeding strategies and grazing rates are diverse. There is an important conceptual difference between uptake rates measured in short-term (min to h) experiments and grazing rates averaged over a longer-term (d). This is because the latter are strongly affected by digestion rates which are species-specific, i.e. the same bacterial prey may be digested differently by various grazers, and the same predator may selectively digest variable prey. Planktonic ciliates are the most important algal consumers in many lakes and marine systems. Large species-specific differences in their feeding behaviour and growth rates have been documented for closely related species. Intraspecific variation, which is, most likely, caused by varying clonal composition may be as important as interspecific variation. Finally, there is some evidence that the individual variability within a given population is generally large, both among bacterivorous HNF and among herbivorous ciliates. The consequences of this diversity becoming apparent at the levels of the species, population, clone and individual need to be considered by aquatic ecologists in their conceptual models.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Arndt H (1993) A critical review of the importance of rhizopods (naked and testate amoebae) and actinopods (helizoa) in lake plankton. Mar. Microb. Food Webs 7: 3–29.

    Google Scholar 

  • Arndt H & Berninger U-G (1995) Protists in aquatic food webs - complex interactions. In: Brugerolle G & Mignot J-P (Eds) Protistological Actualities (Proceedings of the Second European Congress of Protistology, 1995) (pp 224-232). Clermont-Ferrand.

  • Arndt H, Dietrich D, Auer B, Cleven E-J, Gräfenhan T, Weitere M & Mylnikov AP (2000) Functional diversity of heterotrophic flagellates in aquatic ecosystems. In: Leadbeater BSC & Green JC (Eds) The Flagellates (pp 240–268). Taylor & Francis, London.

    Google Scholar 

  • Assmann D (1998) Nahrungsselektion und Nahrungsverwertung chroococcaler Cyanobakterien durch heterotrophe Nanoflagellaten. PhD Thesis, University of Konstanz, 163 pp.

  • Azam F, Fenchel T, Field JG, Gray JS, Meyer-Reil LA & Thingstad F (1983) The ecological role of water-column microbes in the sea. Mar. Ecol. Prog. Ser. 10: 257–263.

    Google Scholar 

  • Beaver JR & Crisman TL (1989) The role of ciliated protozoa in pelagic freshwater ecosystems. Microb. Ecol. 17: 111–136.

    Google Scholar 

  • Bernard C & Rassoulzadegan F (1990) Bacteria or microflagellates as a major food source for marine ciliates: possible implications for the microzooplankton. Mar. Ecol. Prog. Ser. 64: 147–155.

    Google Scholar 

  • Boenigk J & Arndt H (2000a) Comparative studies on the feeding behaviour of two heterotrophic nanoflagellates: the filter-feeding choanoflagellate Monosiga ovata and the raptorial-feeding kinetoplastid Rhynchomonas nasuta. Aquat. Microb. Ecol. 22: 243–249.

    Google Scholar 

  • Boenigk J & Arndt H (2000b) Particle handling during interception feeding by four species of heterotrophic nanoflagellates. J. Eukaryot. Microbiol. 47: 350–358.

    PubMed  CAS  Google Scholar 

  • Boenigk J, Arndt H & Cleven E-J (2001a) The problematic nature of fluorescently labeled bacteria (FLB) in Spumella feeding experiments - an explanation by using video microscopy. Arch. Hydrobiol. 152: 329–338.

    Google Scholar 

  • Boenigk J, Matz C, Jürgens K & Arndt H (2001b) Confusing selective feeding with differential digestion and bacterivorous nanoflagellates. J. Euk. Microb. 48: 425–432.

    CAS  Google Scholar 

  • Boenigk J, Matz C, Jürgens K & Arndt H (2001c) The influence of preculture conditions and food quality on the ingestion and digestion process of three species of heterotrophic nanoflagellates. Microb. Ecol. 42: 168–176.

    PubMed  Google Scholar 

  • Børsheim KY (1984) Clearance rates of bacteria-sized particles by freshwater ciliates, measured with monodisperse fluorescent latex beads. Oecologia 63: 286–288.

    Google Scholar 

  • Bratvold D, Srienc F & Taub SR (2000) Analysis of the distribution of ingested bacteria in nanoflagellates and estimation of grazing rates with flow cytometry. Aquat. Microb. Ecol. 21: 1–12.

    Google Scholar 

  • Bruchmüller I (1998) Molekularbiologische Charakterisierung und phylogenetische Einordnung heterotropher Nanoflagellaten und prostomatider Ciliaten des Süßwassers. PhD Thesis, Mathematisch-Naturwiss. Fakultät. University of Kiel, 196 pp.

  • Caron DA (2000) Symbiosis and mixotrophy among pelagic microorganisms. In Kirchman DL (Ed) Microbial Ecology of the Oceans (pp 495–523). Wiley-Liss, New York.

    Google Scholar 

  • Caron DA & Dennett MR (1986) Effects of temperature on growth, respiration, and nutrient regeneration by an omnivorous microflagellate. Appl. Enrivon. Microb. 52: 1340–1347.

    CAS  Google Scholar 

  • Caron DA, Goldman JC, Andersen OK & Dennett MR (1985) Nutrient cycling in a microflagellate food chain: II. Population dynamics and carbon cycling. Mar. Ecol. Prog. Ser. 24: 243–254.

    CAS  Google Scholar 

  • Caron DA & Swanberg NR (1990) The ecology of planktonic sarcodines. Rev. Aquat. Sci. 3: 147–180.

    Google Scholar 

  • Carrias J-F, Amblard C & Bourdier G (1996) Protistan bacterivory in an oligomesotrophic lake: importance of attached ciliates and flagellates. Microb. Ecol. 31: 249–268.

    PubMed  Google Scholar 

  • Cho BC, Na SC & Choi DH (2000) Active ingestion of fluorescently labeled bacteria by mesopelagic heterotrophic nanoflagellates in the East Sea, Korea. Mar. Ecol. Prog. Ser. 206: 23–32.

    Google Scholar 

  • Chrzanowski TH & Šimek K (1990) Prey-size selection by freshwater flagellated protozoa. Limnol. Oceanogr. 35: 1429–1436.

    Google Scholar 

  • Cleven E-J & Weisse T (2001) Seasonal succession and taxonspecific bacterial grazing rates of heterotrophic nanoflagellates in Lake Constance. Aquat. Microb. Ecol. 23: 147–161.

    Google Scholar 

  • Cucci TL, Shumway SE, Brown WS & Newell CR (1989) Using phytoplankton and flow cytometry to analyze grazing by marine organisms. Cytometry 10: 659–669.

    PubMed  CAS  Google Scholar 

  • Cucci TL, Shumway SE, Newell RC, Selvin R, Guillard RRL & Yentsch CM (1985) Flow cytometry: a new method for characterization of differential ingestion, digestion and egestion by suspension feeders. Mar. Ecol. Prog. Ser. 24: 201–204.

    Google Scholar 

  • Davey HM & Kell DB (1996) Flow cytometry and cell sorting of heterogeneous microbial populations: the importance of singlecell analysis. Microbiol. Rev. 60: 641–696.

    PubMed  CAS  Google Scholar 

  • DeMott WR (1989) The role of competition in zooplankton succession. In: Sommer U (Ed) Plankton Ecology: Sucession in Plankton Communities (pp 195–252). Brock/Springer, Berlin.

    Google Scholar 

  • Dolan JF & Gallegos CL (1991) Trophic coupling between rotifers, microflagellates, and bacteria during fall months in the Rhode River Estuary. Mar. Ecol. Prog. Ser. 77: 147–156.

    Google Scholar 

  • Dolan JR & Šimek K (1997) Processing of ingested matter in Strombidium sulcatum, a marine ciliate. Limnol. Oceanogr. 42: 393–397.

    Google Scholar 

  • Ducklow HW (1991) The passage of carbon through microbial foodwebs: results from flow network models. Mar. Microb. Food Webs 5: 129–144.

    Google Scholar 

  • Edwards ES, Burkill PH & Stelfox CE (1999) Zooplankton herbivory in the Arabian Sea during and after the SW monsoon, 1994. Deep-Sea Res. II 46: 843–863.

    Google Scholar 

  • Fenchel T (1982) Ecology of heterotrophic microflagellates. II. Bioenergetics and growth. Mar. Ecol. Prog. Ser. 8: 225–231.

    Google Scholar 

  • Fenchel T (1987) Ecology of protozoa. The Biology of Free-living Phagotrophic Protists. Science Tech./Springer, Berlin.

    Google Scholar 

  • Finlay BJ & Fenchel T (1996) Ecology: Role of ciliates in the natural environment. In: Hausmann K & Bradbury PC (Eds) Ciliates: Cells as Organisms (pp 417–440). Fischer-Verlag, Stuttgart.

    Google Scholar 

  • Foissner W, Berger H & Schaumburg J (1999) Identification and Ecology of Limnetic Plankton Ciliates. Informationsberichte des Bayerischen Landesamtes für Wasserwirtschaft. Bayerisches Landesamt für Wasserwirtschaft, Heft 3/99, München.

  • Fuhrman JA, Lee SH, Masuchi Y, Davis AA & Wilcox RM (1994) Characterization of marine prokaryotic communities via DNA and RNA. Microb. Ecol. 28: 133–145.

    CAS  Google Scholar 

  • Gaedke U & Straile D (1994) Seasonal changes of the quantitative importance of protozoans in a large lake. An ecosystem approach using mass-balanced carbon flow diagrams. Mar. Microb. Food Webs 8: 163–188.

    Google Scholar 

  • Gaines G & Elbrächter M (1987) Heterotrophic nutrition. In: Taylor FJR (Ed)] The Biology of Dinoflagellates (pp 224–268). Blackwell, Oxford.

    Google Scholar 

  • Gerritsen J, Sanders RW, Bradley SW & Porter KG (1987) Individual feeding variability of protozoan and crustacean zooplankton analyzed with flow cytometry. Limnol. Oceanogr. 32: 691–699.

    Google Scholar 

  • Gonzales JM, Sherr EB & Sherr BF (1990) Size-selective grazing on bacteria by natural assemblages of estuarine flagellates and ciliates. Appl. Enrivon. Microb. 56: 583–589.

    Google Scholar 

  • Gonzalez JM, Sherr EB & Sherr BF (1993) Differential feeding by marine flagellates on growing versus starving, and on motile versus nonmotile bacterial prey. Mar. Ecol. Prog. Ser. 102: 257–267.

    Google Scholar 

  • Güde H (1979) Grazing by protozoa as selection factor for activated sludge bacteria. Microb. Ecol. 5: 225–237.

    Google Scholar 

  • Güde H (1986) Loss processes influencing growth of planktonic bacterial populations in Lake Constance. J. Plankton Res. 8: 795–810.

    Google Scholar 

  • Güde H (1989) The role of grazing on bacteria in plankton succession. In: Sommer U (Ed) Plankton Ecology: Succession in Plankton Communities (pp 337–364). Brock/Springer, Berlin.

    Google Scholar 

  • Hahn MW & Höfle Mg (2001) Grazing of protozoa and its effect on populations of aquatic bacteria. FEMS Microbiol. Ecol. 35: 113–121.

    PubMed  CAS  Google Scholar 

  • Hammer A, Gruttner C & Schumann R (1999) The effect of electrostatic charge of food particles on capture efficiency by Oxyrrhis marina Dujardin (dinoflagellate). Protist 150: 375–382.

    PubMed  CAS  Google Scholar 

  • Hansen FC, Witte HJ & Passarge J (1996) Grazing in the heterotrophic dinoflagellate Oxyrrhis marina: size selectivity and preference for calcified Emiliana huxleyi cells. Aquat. Microb. Ecol. 10: 307–313.

    Google Scholar 

  • Hansen PJ (1992) Prey size selection, feeding rates and growth dynamics of heterotrophic dinoflagellates with special emphasis on Gyrodinium spirale. Mar. Biol. 114: 327–334.

    Google Scholar 

  • Holen DA & Boraas M (1991) The feeding behavior of Spumella sp. as a function of particle size: Implications for bacterial size in pelagic systems. Hydrobiologia 220: 73–88.

    Google Scholar 

  • Hwang S-J & Heath RT (1997) The distribution of protozoa across a trophic gradient, factors controlling their abundance and importance in the plankton food web. J. Plankton Res. 19: 491–518.

    Google Scholar 

  • Jacobson DM & Anderson DM (1986) Thecate heterotrophic dinoflagellates: feeding behavior and mechanisms. J. Phycol. 22: 249–258.

    Google Scholar 

  • Jakobsen HH & Hansen PJ (1997) Prey size selection, grazing and growth response of the small heterotrophic dinoflagellate Gymnodinium sp. and the ciliate Balanion comatum - a comparative study. Mar. Ecol. Prog. Ser. 158: 75–86.

    Google Scholar 

  • Jones RJ (2000) Mixotrophy in planktonic protists: an overview. Freshwat. Biol. 45: 219–226.

    Google Scholar 

  • Jürgens K, Arndt H & Rothhaupt K-O (1994) Zooplankton-mediated changes of bacterial community structure. Microb. Ecol. 27: 27–42.

    Google Scholar 

  • Jürgens K & Güde H (1991) Seasonal changes in the grazing impact of phagotrophic flagellates on bacteria in Lake Constance. Mar. Microb. Food Webs 5: 27–37.

    Google Scholar 

  • Jürgens K & DeMott WR (1995) Behavioral flexibility in prey selection by bacterivorous nanoflagellates. Limnol. Oceanogr. 40: 1503–1507.

    Google Scholar 

  • Jürgens K, Pernthaler J, Schalla S & Amann R (1999) Morphological and compositional changes in a planktonic bacterial community in response to enhanced protozoan grazing. Appl. Environ. Microbiol. 65: 1241–1250.

    PubMed  Google Scholar 

  • Kenter U, Zimmermann U & Müller H (1996) Grazing rates of the freshwater ciliate Balanion planctonicum determined by flow cytometry. J. Plankton Res. 18: 1047–1053.

    Google Scholar 

  • Landry MR (1994) Methods and controls for measuring the grazing impact of planktonic protists. Mar. Microb. Food Webs 8: 37–57.

    Google Scholar 

  • Lavin DP, Frederickson AG & Srienc F (1990) Flow cytometric measurement of rates of particle uptake from dilute suspensions by a ciliated protozoan. Cytometry 11: 875–882.

    PubMed  CAS  Google Scholar 

  • Laybourn-Parry J (1992) Protozoan Plankton Ecology. Chapman & Hall, City. Lessard EJ (1991) The trophic role of heterotrophic dinoflagellates in diverse environments. Mar. Microb. Food Webs 5: 49-58.

    Google Scholar 

  • Lim EL, Amaral LA, Caron DA & DeLong EF (1993) Application of rRNA-based probes for observing marine nanoplanktonic protists. Appl. Environ. Microbiol. 59: 1647–1655.

    PubMed  CAS  Google Scholar 

  • Lindström ES, Weisse T & Stadler P (2002) Enumeration of small ciliates in culture by flow cytometry and nucleic acid staining. J. Microb. Meth. 49: 173–182.

    Google Scholar 

  • McManus GB & Fuhrman JA (1986) Bacterivory in seawater studied with the use of inert fluorescent particles. Limnol. Oceanogr. 31: 420–426.

    Google Scholar 

  • McManus GB & Okubo A (1991) On the use of surrogate food particles to measure protistan ingestion. Limnol. Oceanogr. 36: 613–617.

    Google Scholar 

  • Moloney CL & Field JG (1991) The size-based dynamics of plankton food webs. I. A simulation model of carbon and nitrogen flows. J. Plankton Res. 13: 1003–1038.

    Google Scholar 

  • Monger BC & Landry MR (1992) Size-selective grazing by heterotrophic nanoflagellates: an analysis using live-stained bacteria and dual-beam flow cytometry. Arch. Hydrobiol. Beih. 37: 173–185.

    Google Scholar 

  • Montagnes DJS, Berger JD & Taylor FJR (1996) Growth rate of the marine planktonic ciliate Strombidinopsis cheshiri Snyder and Ohman as a function of food concentration and interclonal variability. J. Exp. Mar. Biol. Ecol. 206: 121–132.

    Google Scholar 

  • Montagnes DJS & Weisse T (2000) Fluctuating temperatures affect growth and production rates of planktonic ciliates. Aquat. Microb. Ecol. 21: 97–102.

    Google Scholar 

  • Monger BC, Landry MR & Brown SL (1999) Feeding selection of heterotrophic marine nanoflagellates based on the surface hydrophobicity of their picoplankton prey. Limnol. Oceanogr. 44: 1917–1927.

    CAS  Google Scholar 

  • Montagnes DJS (1996) Growth responses of planktonic ciliates in the genera Strobilidium and Strombidium. Mar. Ecol. Prog. Ser. 130: 241–254.

    Google Scholar 

  • Müller H (1991) Pseudobalanion planctonicum (Ciliophora, Prostomatida): ecological significance of an algivorous nanociliate in a deep meso-eutrophic lake. J. Plankton Res. 13: 247–262.

    Google Scholar 

  • Müller H (1996) Selective feeding of a freshwater chrysomonad, Paraphysomonas sp., on chroococcoid cyanobacteria and nanoflagellates. Arch. Hydrobiol. Spec. Issues Advanc. Limnol. 48: 63–71.

    Google Scholar 

  • Müller H & Schlegel A (1999) Responses of three freshwater planktonic ciliates with different feeding modes to cryptophyte and diatom prey. Aquat. Microb. Ecol. 17: 49–60.

    Google Scholar 

  • Müller H & Weisse T (1994) Laboratory and field observations on the scuticociliate Histiobalantium from the pelagic zone of Lake Constance, FRG. J. Plankton Res. 16: 391–401.

    Google Scholar 

  • Nagata T (1988) The microflagellate-picoplankton food linkage in the water column of Lake Biwa. Limnol. Oceanogr. 33: 504–517.

    Google Scholar 

  • Neuer S & Cowles TJ (1995) Comparative size-specific grazing rates in field populations of ciliates and dinoflagellates. Mar. Ecol. Prog. Ser. 125: 259–267.

    Google Scholar 

  • Nygaard K, Børsheim KY & Thingstad TF (1988) Grazing rates on bacteria by marine heterotrophic microflagellates compared to uptake rates of bacterial-sized monodisperse fluorescent latex beads. Mar. Ecol. Prog. Ser. 44: 159–165.

    Google Scholar 

  • Pace ML & Bailiff MD (1987) An evaluation of the fluorescent microsphere technique for measuring grazing rates of phagotrophic organisms. Mar. Ecol. Prog. Ser. 40: 185–193.

    Google Scholar 

  • Perez-Uz B (1995) Growth rate variability in geographically diverse clones of Uronema (Ciliophora: Scuticociliatida). FEMS Microbiol. Ecol. 16: 193–204.

    CAS  Google Scholar 

  • Pernthaler J, Alfreider A, Posch T, Andreatta S & Psenner R (1997a) In situ classification and image cytometry of pelagic bacteria from a high mountain lake (Gossenköllesee, Austria). Appl. Environ. Microbiol. 63: 4778–4783.

    PubMed  CAS  Google Scholar 

  • Pernthaler J, Posch T, Šimek K, Vrba J, Amann R & Psenner R (1997b) Contrasting bacterial strategies to coexist with a flagellate predator in an experimental microbial assemblage. Appl. Environ. Microbiol. 63: 596–601.

    PubMed  CAS  Google Scholar 

  • Pierce RW & Turner JT (1992) Ecology of planktonic ciliates in marine food webs. Rev. Aquat. Sci. 6: 139–181.

    Google Scholar 

  • Pomeroy LR (1974) The ocean's food web: a changing paradigm. BioScience 24: 499–504.

    Google Scholar 

  • Porter KG, Sherr EB, Sherr BF, Pace M & Sanders RW (1985) Protozoa in planktonic food webs. J. Protozool. 32: 409–415.

    Google Scholar 

  • Preisig HR, Vörs N & Hällfors G (1991) Diversity of heterokont flagellates. In: Patterson DJ & Larsen J (Eds) The Biology of Free-Living Heterotrophic Flagellates (pp 361–399). Clarendon Press, Oxford.

    Google Scholar 

  • Psenner R (1993) Determination of size and morphology of aquatic bacteria by automated image analysis. In:Kemp PF, Sherr BF, Sherr EB & Cole JJ (Eds) Handbook of Methods in Aquatic Microbial Ecology (pp 339–345). Lewis Publ., Boca Raton.

    Google Scholar 

  • Reckermann M & Colijn F (Eds) (2000) Aquatic Flow Cytometry: Achievements and Prospects. Sci. Mar. 64. Institut de Ciències del Mar, C.S.I.C., Barcelona.

    Google Scholar 

  • Rice J, Sleigh MA, Burkill PH, Tarran GA, O'Connor CD & Zubkov MV (1997) Flow cytometric analysis of characteristics of hybridization of species-specific fluorescent oligonucleotide probes to rRNA of marine nanoflagellates. Appl. Environ. Microbiol. 63: 938–944.

    PubMed  CAS  Google Scholar 

  • Riemann B, Søndergaard M, Persson L & Johansson L (1986) Carbon metabolism and community regulation in eutrophic, temperate lakes. In: Riemann B & Søndergaard M (Eds) Carbon Dynamics in Eutrophic, Temperate Lakes (pp 267–280). Elsevier Science Publishers, Amsterdam.

    Google Scholar 

  • Sanders RW (1991) Trophic strategies among heterotrophic flagellates. In: Patterson DJ & Larsen J (Eds) The Biology of Free-Living Heterotrophic Flagellates (pp 21–38). Clarendon Press, Oxford.

    Google Scholar 

  • Sanders RW & Porter KG (1986) Use of metabolic inhibitors to estimate protozooplankton grazing and bacterial production in a monomictic eutrophic lake with an anaerobic hypolimnion. Appl. Environ. Microbiol. 52: 101–107.

    PubMed  CAS  Google Scholar 

  • Sanders RW & Porter KG (1988) Phagotrophic phytoflagellates. Adv. Microb. Ecol. 10: 167–192.

    Google Scholar 

  • Sanders RW, Porter KG, Bennett SJ & DeBiase AE (1989) Seasonal patterns of bacterivory by flagellates, cilliates, rotifers, and cladocerans in a freshwater plankton community. Limnol. Oceanogr. 34: 673–687.

    Google Scholar 

  • Schnepf E & Elbrächter M (1992) Nutritional strategies in dinoflagellates. Europ. J. Protistol. 28: 3–24.

    Google Scholar 

  • Sherr BF & Sherr EB (1984) Role of heterotrophic protozoa in carbon and energy flow in aquatic ecosystems. In: Klug MJ & Reddy CA (Eds) Current Perspectives in Microbial Ecology (pp 412–423). American Society for Microbiology, Washington.

    Google Scholar 

  • Sherr BF, Sherr EB & Berman T (1983) Grazing, growth, and ammonium excretion rates of a heterotrophic microflagellate fed with four species of bacteria. Appl. Environ. Microbiol. 45: 1196–1201.

    PubMed  Google Scholar 

  • Sherr BF, Sherr EB & Fallon RD (1987) Use of monodispersed, fluorescently labeled bacteria to estimate in situ protozoan bacterivory. App. Environ. Microbiol. 53: 958–965.

    Google Scholar 

  • Sherr BF, Sherr EB & Rassoulzadegan F (1988) Rates of digestion of bacteria by marine phagotrophic protozoa: temperature dependence. Appl. Environ. Microbiol. 54: 1091–1095.

    PubMed  Google Scholar 

  • Sherr EB, Rassoulzadegan F & Sherr BF (1989) Bacterivory by pelagic choreotrichous ciliates in coastal waters of the NW Mediterranean Sea. Mar. Ecol. Prog. Ser. 55: 235–240.

    Google Scholar 

  • Sherr EB & Sherr BF (1987) High rates of consumption of bacteria by pelagic ciliates. Nature 325: 710–711.

    Google Scholar 

  • Sherr EB & Sherr BF (1993) Protistan grazing rates via uptake of fluorescently labeled prey. In: Kemp PF, Sherr BF, Sherr EB & Cole JJ (Eds) Handbook of Methods in Aquatic Microbial Ecology (pp 695–701). Lewis Pub., Boca Raton.

    Google Scholar 

  • Sherr EB & Sherr BF (2002) Significance of predation by protists in aquatic microbial food webs. Antonie van Leeuwenhoek (this volume).

  • Sieracki ME & Webb KL (1991) The application of image analysed fluorescence microscopy for characterising planktonic bacteria and protists. In: Reid PC, Turley CM & Burkill PH (Eds) Protozoa and Their Role in Marine Processes (pp 77–100). Springer Verlag, Berlin.

    Google Scholar 

  • Šimek K, Bobková J, Macek M, Nedoma J & Psenner R (1995) Ciliate grazing on picoplankton in eutrophic reservoir during the summer phytoplankton maximum: a study at the species and community level. Limnol. Oceanogr. 40: 1077–1090.

    Google Scholar 

  • Šimek K, Hartman P, Nedoma J, Pernthaler J, Springmann D, Vrba J & Psenner R (1997a) Community structure, picoplankton grazing and zooplankton control of heterotrophic nanoflagellates in a eutrophic reservoir during the summer phytoplankton maximum. Aquat. Microb. Ecol. 12: 49–63.

    Google Scholar 

  • Šimek K, Jürgens K, Comerma M, Armengol J & Nedoma J (2000) Ecological role and bacterial grazing of Halteria spp.: small freshwater oligotrichs as dominant pelagic ciliate bacterivores. Aquat. Microb. Ecol. 22: 43–56.

    Google Scholar 

  • Šimek K, Kojecká P, Nedoma J, Hartman P, Vrba J & Dolan JR (1999) Shifts in bacterial community composition associated with different microzooplankton size fractions in a eutrophic reservoir. Limnol. Oceanogr. 44: 1634–1644.

    Google Scholar 

  • Šimek K, Macek M, Pernthaler J, Straskrabová & Psenner R (1996) Can freshwater planktonic ciliates survive on a diet of picoplankton? J. Plankton Res. 18: 597–613.

    Google Scholar 

  • Šimek K, Vrba J, Pernthaler J, Posch T, Hartman P, Nedoma J & Psenner R (1997b) Morphological and compositional shifts in an experimental bacterial community influenced by protists with contrasting feeding modes. Appl. Environ. Microbiol. 63: 587–595.

    PubMed  Google Scholar 

  • Sommer U (1981) The role of r-and K-selection in the succession of phytoplankton in Lake Constance. Acta Oecologia-Oecologica Generalis 2: 327–342.

    Google Scholar 

  • Strom SL (1991) Growth and grazing rates of the herbivorous dinoflagellate Gymnodinium sp. from the open subarctic Pacific Ocean. Mar. Ecol. Progr. Ser. 78: 103–113.

    Google Scholar 

  • Suzuki MT (1999) Effect of protistan bacterivory on coastal bacterioplankton diversity. Aquat. Microb. Ecol. 20: 261–272.

    Google Scholar 

  • Swanberg NR (1983) The trophic role of colonial Radiolaria in oligotrophic oceanic environments. Limnol. Oceanogr. 28: 665–666.

    Google Scholar 

  • Turley CM, Newell RC & Robins DB (1986) Survival strategies of two small marine ciliates and their role in regulating bacterial community structure under experimental conditions. Mar. Ecol. Prog. Ser. 33: 59–70.

    Google Scholar 

  • Van Hannen EJ, Veninga M, Bloem J, Gons HJ & Laanbroek HJ (1999) Genetic changes in bacterial community structure associated with protistan grazers. Arch. Hydrobiol. 145: 25–38.

    Google Scholar 

  • Vaqué D, Gasol JM & Marrasé C (1994) Grazing rates on bacteria: the significance of methodology and ecological factors. Mar. Ecol. Prog. Ser. 109: 263–274.

    Google Scholar 

  • Vaqué D & Pace LM (1992) Grazing on bacteria by flagellates and cladocerans in lakes of contrasting food-web structure. J. Plankton Res. 14: 307–321.

    Google Scholar 

  • Vazquez-Dominguez E, Peters F, Gasol JM & Vaqué D (1999) Measuring the grazing losses of picoplankton: methodological improvements in the use of fluorescently labeled tracers combined with flow cytometry. Aquat. Microb. Ecol. 20: 119–128.

    Google Scholar 

  • Verity PG (1986) Grazing of phototrophic nanoplankton by microzooplankton in Narragansett Bay. Mar. Ecol. Prog. Ser. 29: 105–115.

    Google Scholar 

  • Verity PG & Sieracki ME (1993) Use of color image analysis and epifluorescence microscopy to measure plankton biomass. In: Kemp PF, Sherr BF, Sherr EB & Cole JJ (Eds) Handbook of Methods in Aquatic Microbial Ecology (pp 327–338). Lewis Publ., Boca Raton.

    Google Scholar 

  • Vézina AF & Platt T (1988) Food web dynamics in the ocean. I. Best-estimates of flow networks using inverse methods. Mar. Ecol. Prog. Ser. 42: 269–287.

    Google Scholar 

  • Vrieling EG & Anderson DM (1996) Immunofluorescence phytoplankton research: application and potential. J. Phycol. 32: 1–16.

    Google Scholar 

  • Vrieling EG, Vriezekolk G, Gieskes WW, Veenhuis M & Harder W (1996) Immuno-flow cytometric identification and enumeration of the ichthyotoxic dinoflagellate Gyrodinium aureolum Hulburt in artifically mixed algal populations. J. Plankton Res. 18: 1503–1512.

    Google Scholar 

  • Ward BB (1990) Immunology in biological oceanography and marine ecology. Oceanography 3: 30–35.

    Google Scholar 

  • Weisse T (1997) Growth and production of heterotrophic nanoflagellates in a meso-eutrophic lake. J. Plankton Res. 19: 703–722.

    Google Scholar 

  • Weisse T & Frahm A (2001) Species-specific interactions between small planktonic ciliates (Urotricha spp.) and rotifers (Keratella spp.). J. Plankton Res. 23: 1329–1338.

    Google Scholar 

  • Weisse T & Frahm A (2002) Direct and indirect impact of two common rotifer species (Keratella spp.) on two abundant ciliate species (Urotricha furcata, Balanion planctonicum). Freshwat. Biol. 47: 53–64.

    Google Scholar 

  • Weisse T, Karstens N, Meyer VCL, Janke J, Lettner S, & Teichgräber K (2001) Niche separation in common prostome freshwater ciliates: the effect of food and temperature. Aquat. Microb. Ecol. 26: 167–179.

    Google Scholar 

  • Weisse T & Kirchhoff B (1997) Feeding of the heterotrophic freshwater dinoflagellate Peridiniopsis berolinense on cryptophytes: analysis by flow cytometry and electronic particle counting. Aquat. Microb. Ecol. 12: 153–164.

    Google Scholar 

  • Weisse T & Lettner S (2002) The ecological significance of intraspecific variation among freshwater ciliates. Verh. Internat. Verein. Limnol. 28: (in press).

  • Weisse T & Montagnes DJS (1998) Effect of temperature on interand intraspecific isolates of Urotricha (Prostomatida, Ciliophora). Aquat. Microb. Ecol. 15: 285–291.

    Google Scholar 

  • Weisse T & Müller H (1998) Planktonic protozoa and the microbial food web in Lake Constance. Arch. Hydrobiol. Spec. Issues Advanc. Limnol. 53: 223–254.

    Google Scholar 

  • Weisse T, Müller H, Pinto-Coelho RM, Schweizer A, Springmann D & Baldringer G (1990) Response of the microbial loop to the phytoplankton spring bloom in a large prealpine lake. Limnol. Oceanogr. 35: 781–794.

    Google Scholar 

  • Williams PJl (1981) Incorporation of microheterotrophic processes into the classical paradigm of the planktonic food web. Kieler Meeresforsch. Sonderh. 1: 1–28.

    Google Scholar 

  • Wylie JL & Currie DJ (1991) The relative importance of bacteria and algae as food sources for crustacean zooplankton. Limnol. Oceanogr. 36: 708–728.

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Weisse, T. The significance of inter- and intraspecific variation in bacterivorous and herbivorous protists. Antonie Van Leeuwenhoek 81, 327–341 (2002). https://doi.org/10.1023/A:1020547517255

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1020547517255

Navigation