Skip to main content
Log in

Development and characterisation of 140 new microsatellites in apple (Malus x domestica Borkh.)

  • Published:
Molecular Breeding Aims and scope Submit manuscript

Abstract

The availability of suitable genetic markers is essential to efficiently select and breed apple varieties of high quality and with multiple disease resistances. Microsatellites (simple sequence repeats, SSR) are very useful in this respect since they are codominant, highly polymorphic, abundant and reliably reproducible. Over 140 new SSR markers have been developed in apple and tested on a panel of 7 cultivars and 1 breeding selection. Their high level of polymorphism is expressed with an average of 6.1 alleles per locus and an average heterozygosity (H) of 0.74. Of all SSR markers, 115 have been positioned on a genetic linkage map of the cross ‘Fiesta’ × ‘Discovery’. As a result, all 17 linkage groups, corresponding to the 17 chromosomes of apple, were identified. Each chromosome carries at least two SSR markers, allowing the alignment of any apple molecular marker map both with regard to identification as well as to orientation of the linkage groups. To test the degree of conservation of the SSR flanking regions and the transferability of the SSR markers to other Rosaceae species, 15 primer pairs were tested on a series of Maloideae and Amygdaloideae species. The usefulness of the newly developed microsatellites in genetic mapping is demonstrated by means of the genetic linkage map. The possibility of constructing a global apple linkage map and the impact of such a number of microsatellite markers on gene and QTL mapping is discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Chevreau E., Lespinasse Y. and Gallet M. 1985. Inheritance of pollen enzyme and polyploid origin of apple (Malus × domestica Borkh.). Theor. Appl. Genet. 71: 268-277.

    Google Scholar 

  • Conner J.P., Brown S.K. and Weeden N.F. 1997. Randomly amplified polymorphic DNA-based genetic linkage maps of three apple cultivars. J. Amer. Soc. Hort. Sci. 122: 350-359.

    Google Scholar 

  • Darlington C.D. 1963. Chromosome botany and the origins of cultivated plants. 2nd edn. George, Allen and Unwin, London.

    Google Scholar 

  • Gardiner S.E., Basset H.C.M., Noiton D.A.M., Bus V.G., Hofstee M.E., White A.G. et al. 1996. A detailed linkage map around an apple scab resistance gene demonstrates that tow disease resistance classes both carry the Vf gene. Theor. Appl. Genet. 93: 485-493.

    Google Scholar 

  • Gianfranceschi L., Seglias N., Tarchini R., Komjanc M. and Gessler C. 1998. Simple sequence repeats for the genetic analysis of apple. Theor. Appl. Genet. 96: 1069-1076.

    Google Scholar 

  • Guilford P., Prakash S., Zhu J.M., Rikkerink E., Gardiner S., Bassett H. et al. 1997. Microsatellites in Malus x domestica (apple): abundance, polymorphism, and cultivar identification. Theor. Appl. Genet. 94: 249-254.

    Google Scholar 

  • Hemmat M., Weeden N.F., Connor P.J. and Brown S.K. 1997. A DNA marker for columnar growth habit in apple contains a simple sequence repeat. J. Amer Soc. Hort. Sci. 122: 347-349.

    Google Scholar 

  • Hemmat M., Weeden N.F., Manganaris A.G. and Lawson D.M. 1994. Molecular marker linkage map for apple. J. Hered. 85: 4-11.

    Google Scholar 

  • Hokanson S.C., Szewc-McFadden A.K., Lamboy W.F. and McFerson J.R. 1998. Microsatellite (SSR) markers reveal genetic identities, genetic diversity and relationships in a Malus × domestica Borkh. core subset collection. Theor. Appl. Genet. 97: 671-683.

    Google Scholar 

  • Jones C.J., Edwards K.J., Castaglione S., Winfield M.O., Sala F., van de Wiel C. et al. 1997. Reproducibility testing of RAPD, AFLP and SSR markers in plants by a network of European laboratories. Mol. Breed. 3: 381-390.

    Google Scholar 

  • Joobeur T., Viruel M.A., deVicente M.C., Jauregui B., Ballester J., Dettori M.T. et al. 1998. Construction of a saturated linkage map of Prunus using an almondxpeach F2 progeny. Theor. Appl. Genet. 97: 1034-1041.

    Google Scholar 

  • Juniper B.E., Watkins R. and Harris S.A. 1999. The origin of apple. Acta. Hort. 484: 27-33.

    Google Scholar 

  • Kellerhals M., Dolega E., Gessler C., Koller B., Lespinasse Y., Parisi L. et al. 1999. EU-Projekt: Dauerhafte Apfel-Resistenz in Europa (DARE). Schweizerische Zeitschrift für Obst-und Weinbau 17: 421-424.

    Google Scholar 

  • Koller B., Gianfranceschi L., Seglias N., McDermott J. and Gessler C. 1994. DNA markers linked to the Malus floribunda 821 scab resistance. Plant Mol. Biol. 26: 597-602.

    Google Scholar 

  • Koller B., Tenzer I. and Gessler C. 2000. SSR analysis of apple scab lesions. Integrated Control of Pome Fruit Diseases. IOBC/ WPRS Bulletin 23: 93-98.

    Google Scholar 

  • Lander E.S. and Botstein D. 1988. Mapping mendelian factors underlying quantitative traits using RFLP linkage maps. Genetics 121: 183-199.

    Google Scholar 

  • Lespinasse Y., Durel C.E., Parisi L., Laurens F., Chevalier M. and Pinet C. 2000. A European project: D.A.R.E.-Durable apple resistance in Europe. Acta Hort. 538: 197-200.

    Google Scholar 

  • Liebhard R. and Gessler C. 2000. Possible errors in genome mapping. Integrated Control of Pome Fruit Diseases. IOBC/WPRS Bulletin 23: 127-135.

    Google Scholar 

  • Maliepaard C., Alston F.H., Van Arkel G., Brown L.M., Chevreau E., Dunemann F. et al. 1998. Aligning male and female linkage maps of apple (Malus pumila Mill.) using multi-allelic markers. Theor. Appl. Genet. 97: 60-73.

    Google Scholar 

  • Michelmore R.W., Paran I. and Kesseli R.V. 1991. Identification of markers linked to disease-resistance genes by bulked segregant analysis: A rapid method to detect markers in specific genomic regions by using segregating populations. Proc. Natl. Acad. Sci. USA 88: 9828-9832.

    Google Scholar 

  • Nei M. 1973. Analysis of gene diversity in subdivided populations. Proc. Natl. Acad. Sci. USA 70: 3321-3323.

    Google Scholar 

  • Paterson A.H., Lander E.S., Hewitt J.D., Peterson S., Lincoln S.E. and Tanksley S.D. 1988. Resolution of quantitative traits into mendelian factors by using a complete linkage map of restriction fragment length polymorphisms. Nature 355: 721-726.

    Google Scholar 

  • Patocchi A., Gianfranceschi L. and Gessler C. 1999. Towards the map-based cloning of Vf: fine and physical mapping of the Vfregion. Theor. Appl. Genet. 99: 1012-1017.

    Google Scholar 

  • Pejic I., Ajmone-Marsan P., Morgante M., Kozumplick V., Castiglioni P., Taramino G. et al. 1998. Comparative analysis of genetic similarity among maize inbred lines detected by RFLPs, RAPDs, SSRs and AFLPs. Theor. Appl. Genet. 97: 1248-1255.

    Google Scholar 

  • Phipps J.B., Weeden N.F. and Dickson E.E. 1991. Isozyme evidence for the naturalness of Mespilus L. (Rosaceae, subfam. Maloideae). Systematic Botany 16: 546-552.

    Google Scholar 

  • Rafalski J.A., Morgante M., Vogel J.M., Powell W. and Tingey S.V. 1995. Generating and using DNA markers in plants. In: Birren B. and Lai E. (eds), Non-mammalian genome analysis: a practical guide. Academic Press, London, NewYork, pp. 75-134.

    Google Scholar 

  • Saliba-Colombani V., Causse M., Gervais L. and Philouze J. 2000. Efficiency of RFLP, RAPD, and AFLP markers for the construction of an intraspecific map of the tomato genome. Genome 43: 29-40.

    Google Scholar 

  • Seglias N.P. and Gessler C. 1997. Genetics of apple powdery mildew resistance from Malus zumi (Pl2). Integrated Control of Pome Fruit Diseases. IOBC/WPRS Bulletin 20: 195-208.

    Google Scholar 

  • Smeets H.J.M., Brunner H.G., Ropers H.-H. and Wieringa B. 1989. Use of variable simple sequence motifs as genetic markers: application to study of myotonic dystrophy. Hum. Genet. 83: 245-251.

    Google Scholar 

  • Stam P. and Van Ooijen J.W. 1995. JoinMap® version 2.0: Software for the calculation of genetic linkage maps. Plant Research International, Wageningen, The Netherlands.

    Google Scholar 

  • Stebbins G. 1950. Polyploidy and the origin of higher categories. In: Variation and evolution in plants. Columbia University Press, New York, pp. 359-362.

    Google Scholar 

  • Tartarini S., Gianfranceschi L., Sansavini S. and Gessler C. 1999. Development of reliable PCR markers for the selection of the Vf gene conferring scab resistance in apple. Plant Breed 118: 183-186.

    Google Scholar 

  • Voorrips R.E. 2001. MapChart version 2.0: Windows software for the graphical presentation of linkage maps and QTLs. Plant Research International, Wageningen, The Netherlands.

    Google Scholar 

  • Vos P., Hogers R., Bleeker M., Reijans M., van de Lee T., Hornes M. et al. 1995. AFLP: a new technique for DNA fingerprinting. Nucleic Acids Research 23: 4407-4414.

    Google Scholar 

  • Weber J.L. and May P.E. 1989. Abundant class of human DNA polymorphism which can be typed using the polymerase chain reaction. Am. J. Hum. Genet. 44: 388-396.

    Google Scholar 

  • Xu M.L. and Korban S.S. 2000. Saturation mapping of the apple scab resistance gene Vf using AFLP markers. Theor. Appl. Genet. 101: 844-851.

    Google Scholar 

  • Yamamoto T., Kimura T., Sawamura Y., Kotobuki K., Ban Y., Hayashi T. et al. 2001. SSRs isolated from apple can identify polymorphism and genetic diversity in pear. Theor. Appl. Genet. 102: 865-870.

    Google Scholar 

  • Zhou Z.Q. and Li Y.N. 2000. The RAPD evidence for the phylogenetic relationship of the closely related species of cultivated apple. Genectic Resources and Crop Evolution 47: 353-357.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Liebhard, R., Gianfranceschi, L., Koller, B. et al. Development and characterisation of 140 new microsatellites in apple (Malus x domestica Borkh.). Molecular Breeding 10, 217–241 (2002). https://doi.org/10.1023/A:1020525906332

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1020525906332

Navigation