J. D. Angrist, G. W. Imbens and D. B. Rubin, “Identification of causal effects using instrumental variables (with comments),” *Journal of the American Statistical Association*, 91(434), pp. 444-472, 1996.

A. Balke and J. Pearl, “Counterfactuals and policy analysis in structural models,” in *Uncertainty in Artificial Intelligence 11* (P. Besnard and S. Hanks, eds.), Morgan Kaufmann, San Francisco, pp. 11-18, 1995.

A. Balke and J. Pearl, “Bounds on treatment effects from studies with imperfect compliance,” *Journal of the American Statistical Association*, 92(439), pp. 1172-1176, 1997.

H. Becher, “The concept of residual confounding in regression models and some applications,” *Statistics in Medicine*, 11, pp. 1747-1758, 1992.

Y. M. M. Bishop, “Effects of collapsing multidimensional contingency tables,” *Biometrics*, 27, pp. 545-562, 1971.

K. A. Bollen. *Structural Equations with Latent Variables*, John Wiley, New York, 1989.

B. Bonet, “Instrumentality tests revisited,” in *Proceedings of the Seventeenth Conference on Uncertainty in Artificial Intelligence*, Morgan Kaufmann, San Francisco, CA, pp. 48-55, 2001.

R. J. Bowden and D. A. Turkington. *Instrumental Variables*, Cambridge University Press, Cambridge, England, 1984.

N. E. Breslow and N. E. Day. *Statistical Methods in Cancer Research; Vol. 1, The Analysis of Case-Control Studies*, IARC, Lyon, 1980.

N. Cartwright. *Nature's Capacities and Their Measurement*, Clarendon Press, Oxford, 1989.

D. M. Chickering and J. Pearl, “A clinician's tool for analyzing non-compliance,” *Computing Science and Statistics*, 29(2), pp. 424-431, 1997.

R. G. Cowell, A. P. Dawid, S. L. Lauritzen and D. J. Spielgelhalter. *Probabilistic Networks and Expert Systems*, Springer Verlag, New York, NY, 1999.

D. R. Cox. *The Planning of Experiments*, John Wiley and Sons, NY, 1958.

A. P. Dawid, “Conditional independence in statistical theory,” *Journal of the Royal Statistical Society, Series B*, 41(1), pp. 1-31, 1979.

O. D. Duncan. *Introduction to Structural Equation Models*, Academic Press, New York, 1975.

E. Eells. *Probabilistic Causality*, Cambridge University Press, Cambridge, MA, 1991.

D. Freedman, “As others see us: A case study in path analysis (with discussion),” *Journal of Educational Statistics*, 12(2), pp. 101-223, 1987.

D. Galles and J. Pearl, “Testing identifiability of causal effects,” in *Uncertainty in Artificial Intelligence 11* (P. Besnard and S. Hanks, eds.), Morgan Kaufmann, San Francisco, pp. 185-195, 1995.

A. S. Goldberger, “Structural equation models in the social sciences,” *Econometrica: Journal of the Econometric Society*, 40, pp. 979-1001, 1972.

D. A. Grayson, “Confounding confounding,” *American Journal of Epidemiology*, 126, pp. 546-553, 1987.

S. Greenland and J. M. Robins, “Identifiability, exchangeability, and epidemiological confounding,” *International Journal of Epidemiology*, 15(3), pp. 413-419, 1986.

S. Greenland, J. Pearl and J. M Robins, “Causal diagrams for epidemiologic research,” *Epidemiology*, 10(1), pp. 37-48, 1999a.

S. Greenland, J. M. Robins and J. Pearl, “Confounding and collapsibility in causal inference,” *Statistical Science*, 14(1), pp. 29-46, 1999b.

S. Greenland, “Relation of the probability of causation to the relative risk and the doubling dose: A methodologic error that has become a social problem. *American Journal of Public Health*, 89, pp. 1166-1169, 1999.

W. W. Hauck, J. M. Heuhaus, J. D. Kalbfleisch and S. Anderson, “A consequence of omitted covariates when estimating odds ratios,” *Journal Clinical Epidemiology*, 44(1), pp. 77-81, 1991.

J. J. Heckman and J. Smith, “Evaluating the welfare state,” in *Econometric and Economic Theory in the 20th Century* (S. Strom, ed.), Cambridge University Press, Cambridge, England, pp. 1-60, 1998.

P. W. Holland and D. B. Rubin, “Causal inference in retrospective studies,” *Evaluation Review*, 13, pp. 203-231, 1988.

P. W. Holland, “Causal inference, path analysis, and recursive structural equations models,” in *Sociological Methodology* (C. Clogg, ed.), American Sociological Association, Washington, D.C., pp. 449-484, 1988.

G. W. Imbens and J. D. Angrist, “Identification and estimation of local average treatment effects,” *Econometrica*, 62(2), pp. 467-475, 1994.

K. G. Joreskog and D. Sorbom. *LISREL IV: Analysis of Linear Structural Relationships by Maximum Likelihood*, International Educational Services, Chicago, 1978.

J. S. Kaufman and S. Kaufman, “Assessment of structured socioeconomic effects on health,” *Epidemiology*, 12(2), pp. 157-167, 2001.

H. Kiiveri, T. P. Speed and J. B. Carlin, “Recursive causal models,” *Journal of Australian Math Society*, 36, pp. 30-52, 1984.

D. G. Kleinbaum, L. L. Kupper, K. E. Muller and A. Nizam. *Applied Regression Analysis and Other Multivariable Methods*, Duxbury Press, Pacific Grove, third edition, 1998.

T. C. Koopmans, “Identification problems in econometric model construction,” in *Studies in Econometric Method* (W. C. Hood and T. C. Koopmans, eds.), Wiley, New York, pp. 27-48, 1953.

M. Kuroki and M. Miyakawa, “Identifiability criteria for causal effects of joint interventions,” *Journal of the Japan Statistical Society*, 29(2), pp. 105-117, 1999.

S. L. Lauritzen. *Graphical Models*, Clarendon Press, Oxford, 1996.

S. L. Lauritzen, “Causal inference from graphical models,” Technical Report R-99-2021, Department of Mathematical Sciences, Aalborg University, Denmark, 1999.

D. V. Lindley and M. R. Novick, “The role of exchangeability in inference,” *The Annals of Statistics*, 9(1), pp. 45-58, 1981.

C. F. Manski, “Nonparametric bounds on treatment effects,” *American Economic Review, Papers and Proceedings*, 80, pp. 319-323, 1990.

C. F. Manski. *Identification Problems in the Social Sciences*, Harvard University Press, Cambridge, MA, 1995.

O. S. Miettinen and E. F. Cook, “Confounding essence and detection,” *American Journal of Epidemiology*, 114, pp. 593-603, 1981.

B. Muthen, “Response to Freedman's critique of path analysis: Improve credibility by better methodological training,” *Journal of Educational Statistics*, 12(2), pp. 178-184, 1987.

J. Neyman, “On the application of probability theory to agricultural experiments,” *Essay on principles. Section 9. Statistical Science*, 5(4), pp. 465-480, 1923.

J. Pearl and J. M. Robins, “Probabilistic evaluation of sequential plans from causal models with hidden variables,” in *Uncertainty in Artificial Intelligence 11* (P. Besnard and S. Hanks, eds.), Morgan Kaufmann, San Francisco, pp. 444-453, 1995.

J. Pearl and T. Verma, “A theory of inferred causation,” in *Principles of Knowledge Representation and Reasoning: Proceedings of the Second International Conference* (J. A. Allen, R. Fikes and E. Sandewall, eds.), Morgan Kaufmann, San Mateo, CA, pp. 441-452, 1991.

J. Pearl. *Probabilistic Reasoning in Intelligent Systems*, Morgan Kaufmann, San Mateo, CA, 1988.

J. Pearl, “Comment: Graphical models, causality, and intervention,” *Statistical Science*, 8, pp. 266-269, 1993.

J. Pearl, “Causal diagrams for empirical research,” *Biometrika*, 82(4), pp. 669-710, 1995a.

J. Pearl, “On the testability of causal models with latent and instrumental variables,” in *Uncertainty in Artificial Intelligence 11* (P. Besnard and S. Hanks, eds.), Morgan Kaufmann, pp. 435-443, 1995b.

J. Pearl. *Causality: Models, Reasoning, and Inference*, Cambridge University Press, New York, 2000.

J. M. Robins, “The analysis of randomized and non-randomized aids treatments trials using a new approach to casual inference in longitudinal studies,” in *Health Service Research Methodology: A Focus on AIDS* (L. Sechrest, H. Freeman, and A. Mulley, eds.), U.S. Public Health Service, Washington D.C., pp. 113-159, 1989a.

J. M. Robins and S. Greenland, “The probability of causation under a stochastic model for individual risk,” *Biometrics*, 45, pp. 1125-1138, 1989b.

J. M. Robins and S. Greenland, “Identifiability and exchangeability for direct and indirect effects,” *Epidemiology*, 3(2), pp. 143-155, 1992.

J. M. Robins, “Anewapproach to causal inference in mortality studies with a sustained exposure period-applications to control of the healthy workers survivor effect,” *Mathematical Modeling*, 7, pp. 1393-1512, 1986.

J. M. Robins, “A graphical approach to the identification and estimation of causal parameters in mortality studies with sustained exposure periods,” *Journal of Chronic Diseases*, 40(Suppl 2), pp. 139S-161S, 1987.

J. M. Robins, “Data, design, and background knowledge in etiologic inference,” *Epidemiology*, 12(3), pp. 313-320, 2001.

P. Rosenbaum and D. Rubin, “The central role of propensity score in observational studies for causal effects,” *Biometrica*, 70, pp. 41-55, 1983.

D. B. Rubin, “Estimating causal effects of treatments in randomized and nonrandomized studies,” *Journal of Educational Psychology*, 66, pp. 688-701, 1974.

H. A. Simon and N. Rescher, “Cause and counterfactual,” *Philosophy and Science*, 33, pp. 323-340, 1966.

H. A. Simon, “Causal ordering and identifiability,” in *Studies in Econometric Method* (Wm. C. Hood and T. C. Koopmans, eds.), Wiley and Sons Inc., pp. 49-74, 1953.

M. E. Sobel, “Causal inference in statistical models of the process of socioeconomic achievement,” *Sociological Methods & Research*, 27(2), pp. 318-348, 1998.

P. Spirtes, C. Glymour and R. Scheines. *Causation, Prediction, and Search*, Springer-Verlag, New York, 1993.

P. Suppes. *A Probabilistic Theory of Causality*, North-Holland Publishing Co., Amsterdam, 1970.

J. Tian and J. Pearl, “Probabilities of causation: Bounds and identification,” in *Proceedings of the Sixteenth Conference on Uncertainty in Artificial Intelligence*, Morgan Kaufmann, San Francisco, CA, pp. 589-598, 2000.

J. Tian and J. Pearl, “On the identification of causal effects,” in *Proceedings of the American Association of Artificial Intelligence*, AAAI Press=The MIT Press, Menlo Park, CA, 2002.

J. Tian, A. Paz and J. Pearl, “Finding minimal separating sets,” *Technical Report R-254*, University of California, Los Angeles, CA, 1998.

C. R. Weinberg, “Toward a clearer definition of confounding,” *American Journal of Epidemiology*, 137, pp. 1-8, 1993.

N. Wermuth and D. Cox, “Linear dependencies represented by chain graphs,” *Statistical Science*, 8(3), pp. 204-218, 1993.

N. Wermuth, “On block-recursive regression equations (with discussion),” *Brazilian Journal of Probability and Statistics*, 6, pp. 1-56, 1992.

J. Whittaker. *Graphical Models in Applied Multivariate Statistics*, John Wiley, Chichester, England, 1990.

A. S. Whittemore, “Collapsibility of multidimensional contingency tables,” *Journal of the Royal Statistical Society, B*, 40(3), pp. 328-340, 1978.

S. Wright, “Correlation and causation,” *Journal of Agricultural Research*, 20, pp. 557-585, 1921.